
University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic

Interpolation and Approximation
Methods for Large Geometric Datasets
State of the Art and Concept of Ph.D. Thesis

Zuzana Majdišová

Technical Report No. DCSE/TR-2016-05
July, 2016

Distribution: public

Technical Report No. DCSE/TR-2016-05
July 2016

Interpolation and Approximation
Methods for Large Geometric Datasets

Zuzana Majdišová

Abstract
A surface reconstruction of large scattered datasets using interpolation or approxi-
mation methods is often a task in many engineering problems. Several techniques
have been developed for the surface reconstruction, but they mostly require the
conversion of a scattered dataset to an ordered dataset, i.e. a semi-regular mesh
is obtained by using some tessellation techniques, which is computationally ex-
pensive. Therefore, we focus to the Radial Basis Function (RBF) methods which
are appropriate for large scattered datasets in d−dimensional space.
The RBF methods are non-separable as it is based on the distance between two
points, and lead to a solution of a linear system of equations. Using RBF methods;
the implicit or explicit analytical representation of the surface can be obtained. It
is one of the advantages over the classical triangulation methods.
The following report contains the state of the art in the given computer graphics
area; it aims to the description of important data structures for storage of the
large scattered datasets and several existing RBF methods. Then, the report
shows the common problems of these methods. Finally, the report focuses on the
presumptive future work.

This work was supported by the Ministry of Education, Youth and Sports, project
LH12181 and by the projects SGS-2013-029 and SGS-2016-013.
Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:
University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic
Copyright ©2016 University of West Bohemia, Czech Republic

Acknowledgements

I would like to thank my colleagues for their numerous and practical advices.
Great thank belongs to my supervisor Prof. Ing. Václav Skala, CSc. for his
time, patience and valuable comments. Furthermore, my thanks also belong to
my family and my friends whose support was very important to me during my
studies.

Contents

Used Notation 4

1 Introduction 5

1.1 Organization . 6

2 Data Structures for Large Scattered Datasets 7

2.1 Sparse Matrix Format . 7
2.1.1 Diagonal Format . 8
2.1.2 ELLPACK Format . 9
2.1.3 Coordinate Format . 11
2.1.4 Compressed Sparse Row Format 12
2.1.5 Hybrid Format . 12
2.1.6 Quadtree Data Format . 13

2.2 Space Subdivision . 14
2.2.1 Residency Mask (RM) . 15
2.2.2 Binary Mask (BM) . 15

2.3 Summary . 17

3 Meshless Interpolation and Approximation 18

3.1 Radial Basis Function (RBF) . 18
3.2 RBF Interpolation Methods . 21

3.2.1 RBF Interpolation . 21
3.2.2 RBF Interpolation with Polynomial Reproduction 22
3.2.3 Regularized RBF Interpolation 23

1

3.2.4 Summary . 24
3.3 RBF Approximation Methods . 24

3.3.1 RBF Approximation . 25
3.3.2 RBF Approximation using Lagrange Multipliers 26
3.3.3 Original RBF Approximation with Polynomial Reproduction 27
3.3.4 Proposed RBF Approximation with Polynomial Reproduction 28

3.4 RBF Approximation for Large Data 30
3.5 Experimental Results of RBF Approximation 32

3.5.1 Types of Reference Points Distribution 32
3.5.2 Synthetic Datasets . 34
3.5.3 Real Datasets . 46
3.5.4 Summary . 52

4 Reconstruction of Geometric Datasets 54

4.1 Carr’s Method . 54
4.1.1 Fitting an Implicit Function to a Surface 54
4.1.2 RBF Center Reduction . 56
4.1.3 Reconstruction of Noisy Data 57

4.2 Multilevel Compactly Supported RBF Interpolation 58
4.3 3D Scattered Data Approximation with Adaptive Partition of Unity

and CS-RBFs . 60
4.4 Morse’s Method . 62
4.5 Tobor’s Method . 63
4.6 RBF Interpolation on GPU . 64
4.7 TVL1 Shape Approximation . 66

5 Proposal of Future Work 69

References 71

Publications 77

Submitted Publications . 77

2

A Project Assignments, Other Activities 78

A.1 Conferences and Talks . 78
A.2 Abroad . 78
A.3 Participation on Scientific Projects 79
A.4 Teaching Activities . 79
A.5 Other Activities . 79

3

Used Notation

a Scalar value

a Column vector, i.e. a = [a1, . . . , aN]T

A Matrix

I Identity matrix

A Set of elements

R Real numbers

Ed d-dimensional Euclidean space

∇f Gradient of function f
∂f

∂x
Partial derivative of function f with respect to variable x

‖.‖ Euclidean norm

4

Chapter 1

Introduction

Interpolation and approximation are the most frequent operations used in compu-
tational techniques. Several techniques have been developed for data interpolation
or approximation, but an ordered dataset is mostly expected, e.g. a rectangular
mesh, a structured mesh, an unstructured mesh, etc. However, in many engineer-
ing problems, data are not ordered, and they are scattered in d−dimensional space,
in general. In fact, the conversion of a scattered dataset to a semi-regular grid is
commonly performed in technical applications using some tessellation techniques.
However, this approach is quite prohibitive for the case of d−dimensional data
due to the computational cost.
Interesting techniques are based on the Radial Basis Function (RBF) method
which was originally introduced by [Har71]. They are widely used across many
fields solving technical and non-technical problems. RBF techniques are effec-
tive tools for solving partial differential equations in engineering and sciences
[HSfY15], [LCC13], [Isk04]. Moreover, RBF applications can be found in neural
networks, fuzzy systems, pattern recognition, data visualization [PRF14], medical
applications, surface reconstruction [IdSPT14], [SPN14], [SPN13], [PS11a], [PS11b],
[KHS03], [TO02], [DTS02], [CBC+01], reconstruction of corrupted images [US05],
[ZVS09], etc. Note that some of the methods for surface reconstruction mentioned
above provide implicit representation of surface, and some other methods give
explicit representation. The RBF techniques are really meshless and are based
on collocation in a set of scattered nodes. These methods are independent with
respect to the dimension of the space and lead to the solution of linear system of
equations. The computational cost of RBF approximation increases nonlinearly
(almost cubic) with the number of points in the given dataset, and linearly with
the dimensionality of data.
The processed point clouds are mostly created by 3D scanner, and they contain
very large amount of points. Moreover, points in the cloud may not be uniformly
distributed, and the holes can be formed. Therefore, it is necessary to develop

5

the methods which are fast and able to reconstruct corrupted datasets [OBS06],
[OBS05], [TRS04], [OBA+03], etc. for mathematical representation of surface. It
is possible to obtain further acceleration of calculation using high performance
computing, such approaches are introduced e.g. in [TGB14] and [CGGS13].
The RBF approximation is generally faster than the RBF interpolation, but the
larger errors and inaccuracies are produced. To solve such problems, the modified,
robust moving least square method was presented in [JCW+15].
As mentioned above, RBF methods lead to the solution of a linear system of the
size equal to the number of data points, further, current 3D data scanners allow
acquisition of tens of millions points, thus, there is also an important task to find
appropriate data structures for storing the point clouds, reconstructed surfaces
and representation of matrix of the linear system. There are many publications
[SMP+15], [Law13], [LK11], [Šim09], [BG09], [SHK09] [LD08], [BG08], [LZ06],
[Mas03] etc. in which introduce a description of several useful data structures.

1.1 Organization

The rest of this work is divided into three parts. The first part (Chapter 2)
provides an overview of data structures for large scattered datasets. The second
part (Chapter 3) describes radial basis functions (RBFs) and the basic idea of
meshless interpolation and approximation methods.
Chapter 4 covers the main topic of this work - reconstruction of large geometric
datasets. In this chapter the important existing interpolation or approximation
methods for large geometric datasets are briefly outlined. Finally, the proposal of
future work is described.

6

Chapter 2

Data Structures for Large
Scattered Datasets

Meshless interpolation and approximation lead to the solution of linear system of
equation. According to the used basis function the matrix of linear system can
be sparse or dense. Moreover, the input dataset contains many points which are
scattered in space.
Therefore, in this chapter, we focus on existing data structures which can help us
with storage of large scattered dataset or necessary sub-results, e.g. sparse matrix
etc.

2.1 Sparse Matrix Format

The matrix of linear system of equations can be sparse for some approximation or
interpolation methods when the CS-RBFs are used. Moreover, the performance
of mathematical operations with sparse matrices depends strongly on the storage
format used. Therefore, the most important part of each approximation is a data
structure used to store the approximation matrix. There are a number of existing
sparse matrix representations, each with different computational characteristics,
storage requirements, and methods of accessing and manipulating entries of the
matrix. The main difference among existing storage formats is the sparsity pattern,
or the structure of the nonzero elements, for which they are best suited. We
also have to consider general representations which efficiently store matrices with
arbitrary sparsity patterns. There is the summarization of several existing sparse
matrix representations performed in the remainder of this section which is based
on [BG08], [BG09], [Šim09], [Law13] and [SMP+15].

7

2.1.1 Diagonal Format

When nonzero values are restricted to a small number of matrix diagonals ND, then
diagonal format (DIA) is an appropriate representation. This format efficiently
encodes matrices arising from the common discretization methods, the application
of stencils to regular grids etc. A 25× 25 sparse matrix with 5 occupied diagonals
can be seen in Figure 2.1.

Figure 2.1: A 25× 25 sparse matrix with 5 occupied diagonals [BG08].

The diagonal format is formed by two arrays for representation of matrix: data,
where the nonzero values are stored, and offsets, where the offset of each diagonal
from the main diagonal is stored. By convection, the main diagonal is represented
by offset 0, while i > 0 defines the i-th super-diagonal and i < 0 the i-th
sub-diagonal.
Example of the DIA format for matrix A with four occupied diagonals:

A =

1 0 6 0 0
9 2 0 7 0
0 1 3 0 8
4 0 2 4 0
0 5 0 3 5

data =

∗ ∗ 1 6
∗ 9 2 7
∗ 1 3 8
4 2 4 ∗
5 3 5 ∗

 offsets =
[
−3 −1 0 2

]

Usage: y = Ax : yi =
∑ND−1

j=0
data

[
i, offsets[j] + i

]
· xoffsets[j]+i

8

Note that elements marked with the symbol ∗ are used for padding and may store
an arbitrary value.
The benefits of the diagonal format are two. First, this format avoids the need to
store row/column indices of nonzero elements because indices are implicitly defined
by their position in data array and the corresponding offset of the diagonal, i.e.
row index of the matrix coincides with row index of the data array and column
index of the matrix corresponds to sum of the row index of the data array and
offset value, which has the same column index as nonzero element in data array.
Second, all memory accesses to arrays are contiguous which improves the efficiency
of memory transactions.
The disadvantages of the DIA format are also clear. This representation is
appropriate only for certain patterns. Some patterns of sparse matrices, which
are inappropriate for DIA, can be seen in Figure 2.2. Moreover, it can also
potentially waste storage since it allocates memory for values “outside” the matrix
and explicitly stores zero values that occur in occupied diagonals.

Figure 2.2: Sparsity patterns that are ill-suited to the sparse diagonal format
[BG08].

2.1.2 ELLPACK Format

ELLPACK (ELL) format is more general than DIA format and is well-suited
to vector architectures. An M × N sparse matrix which has a maximum of K
nonzero values per row is stored as a dense M ×K array data, where rows with
fewer that K nonzero values are zero-padded, and M ×K array indices, where
the column index for each nonzero element is stored. Based on empirical results,
this format is profitable if at least one third of the matrix rows contain K nonzero
values.

9

Example of the ELL format for matrix A with a maximum of three nonzero values
per row:

A =

1 0 6 0 0
9 2 0 7 0
0 1 3 0 8
4 0 2 4 0
0 5 0 3 5

data =

1 6 ∗
9 2 7
1 3 8
4 2 4
5 3 5

 indices =

0 2 ∗
0 1 3
1 2 4
0 2 3
1 3 4

Usage: y = Ax : yi =

∑K−1

j=0
data

[
i, indices[i, j]

]
· xindices[i,j]

The ELL format is more general than the DIA format since the nonzero columns
need not follow any particular pattern. Note that row indices are defined implicitly
and column indices are stored explicitly.
The ELL format is most efficient when the maximum number of nonzero values
per row does not substantially differ from average. Therefore, this storage scheme
is, for example, appropriate for semi-structured or unstructured meshes, in which
the maximum vertex degree is not significantly greater that average degree,
see Figure 2.3. In contrast, the example of an unstructured mesh, which is
inappropriate for the ELL format, can be seen in Figure 2.4.

Figure 2.3: The example semi-structured (left) and unstructured (right) meshes
whose vertex-edge connectivity is efficiently encoded in ELL format. In each case
the maximum vertex degree is not significantly greater that the average degree
[BG08].

10

Figure 2.4: The vertex-edge connectivity of the wheel is not efficiently encoded in
ELL format. Since the center vertex has high degree relative to average degree,
the vast majority of the entries in the data and indices arrays representation will
be wasted [BG08].

2.1.3 Coordinate Format

The coordinate (COO) format is the simplest storage scheme. The sparse matrix
is represented by three arrays: data, where the NNZ nonzero values are stored,
row, where the row index of each nonzero element is kept, and col, where the
column indices of the nonzero values are stored.
Example of the COO format for matrix A:

A =

1 0 6 0 0
9 2 0 7 0
0 1 3 0 8
4 0 2 4 0
0 5 0 3 5

row = [0 0 1 1 1 2 2 2 3 3 3 4 4 4]
col = [0 2 0 1 3 1 2 4 0 2 3 1 3 4]

data = [1 6 9 2 7 1 3 8 4 2 4 5 3 5]

Usage: y = Ax : yrow[i] = yrow[i] + data[i] · xcol[i], i = 0, . . . , NNZ

The benefit of the COO format is its generality, i.e. arbitrary sparse matrix can
be represented by COO format and the required storage is always proportional to
the number of nonzero values.
The disadvantage of the COO format is that both row and column indices are
stored explicitly which declines the efficiency of memory transactions.

11

2.1.4 Compressed Sparse Row Format

The compressed sparse row (CSR) format is the most common format for storing
sparse matrices. The CSR format can be viewed as a natural extension of the
COO representation with a simple compression scheme, which is applied to the
row indices. Like the COO format, CSR explicitly stores column indices and
nonzero values in arrays indices and data. A third array pts, which is used
by CSR format, is array of row pointers. This array allows the CSR format to
represent rows of varying length. For M ×N sparse matrix, ptr has length M + 1
and stores the offset into the i-th row in ptr[i]. The last element in ptr, which
would otherwise correspond to the (M + 1)-st row, stores the number of nonzero
values in the sparse matrix.
Example of the CSR format for matrix A:

A =

1 0 6 0 0
9 2 0 7 0
0 1 3 0 8
4 0 2 4 0
0 5 0 3 5

ptr = [0 2 5 8 11 14]

indices = [0 2 0 1 3 1 2 4 0 2 3 1 3 4]
data = [1 6 9 2 7 1 3 8 4 2 4 5 3 5]

Usage: y = Ax : yi =
∑ptr[i+1]−1

j=ptr[i]
data[j] · xindices[j]

The benefits of the CSR format are two. First, row pointers facilitate fast querying
of matrix values. Second, row pointers allow readily computed the other quantities
of interest, such as the number of nonzero values in a particular row. For these
reasons, the CSR format is commonly used for sparse matrix computations.

2.1.5 Hybrid Format

While ELL format is well-suited to vector architectures, its efficiency rapidly
decreases when the number of nonzero values per row varies. In contrary, efficiency
of the COO format is invariant to the distribution of nonzero values. To obtain
the benefits of both, these are combined into a hybrid ELL/COO format.
The main idea of the hybrid (HYB) format is to store the typical number of
nonzero values per row in the ELL data structure and the remaining elements of
exceptional rows in the COO format. The typical number of nonzero values per
row is often known as a priori. However, in the general case this number must be

12

determined from the sparse matrix. It can be performed so that the histogram
of the row sizes is computed and the number K is determined. In this case, the
number K is the largest number such that using K columns per row in the ELL
portion of the HYB format meets a certain objective measure. Based on empirical
results, it is shown that the fully-occupied ELL format is roughly three times
faster than COO. Therefore, it is profitable to add a K-th column to the ELL
representation if at least one third of the matrix rows contains least K nonzero
values. The example of the HYB format can be seen in Figure 2.5.

Figure 2.5: Sparse representations for matrix in COO, CSR, ELL and HYB format
[SMP+15].

2.1.6 Quadtree Data Format

The consequence of indirect addressing is that previous formats are slow. Therefore,
the quadtree data format has been developed. This format is based on quadtree
(4-ary tree) which is the recursive data structure. In this case, the quadtree
represents a partition of the matrix into submatrices (nodes), see Figure 2.6. Each
node of the tree is assigned with one type. Inner nodes of this tree can be divided
into “Mixed” or “Empty” nodes. “Empty” node is represented by the NULL
pointer. Leaves of the quadtree are divided into “Full” or “Sparse” nodes. The
“Sparse” node is sparse submatrix represented by COO format.
Benefits of using quadtree are the following. It can be performed an easy and fast
conversion from standard sparse matrix storage formats such as COO or CSR.
In comparison to standard formats; quadtree can be relatively easily modified
(the exact complexity depends on the type of modified node). Moreover, the
better performance against standard storage formats, which is achieved in that
the matrix is stored as small dense submatrices, is provided.

13

Figure 2.6: Tridiagonal matrix in the quadtree storage format. Locations of
nonzero elements and “Empty” nodes are marked [Šim09].

2.2 Space Subdivision

The space subdivision techniques are very often used for determination which
object from the given dataset lying at least partially within the given area. These
techniques uniformly divide space into smaller areas, see Figure 2.7. Their aim is
to enable fast test whether a geometric object resides at least partially within the
given area. Standard techniques lead to memory requirements which are possible
to approximately estimated as O(p · q ·Md), where p is a number of objects, d is a
dimension of space, M is a number of subdivision in one axis and q is a probability
that an “average” object hits the given interval, generally q is a function defined
as q = q(M, p, s), where s is a size of an “average” object. It is obvious that
memory consumption is rapidly growing with the refinement of the subdivision
and the dimension of space. So those requirements are not acceptable in the case
of small objects.

Figure 2.7: Space partitioning in E2 [Ska12].

14

2.2.1 Residency Mask (RM)

The residency mask [Cyc92] is a bit vector in which each bit is used for the cell
within the partitioned d−dimensional space. The residency mask is determined
for each object in this space. Generally, an appropriate bit is set to 1 if the object
resides at least partially within the given cell of d−dimensional space. Residency
masks for objects in Figure 2.7 correspond to:

Item Bit Mask
object A
object B
object C
object D
object E

[0000 0000 0110 0110]
[0000 1100 1100 0000]
[0000 0010 0000 0000]
[1100 0000 0000 0000]
[0000 0000 0011 0011]

It can be seen that memory requirements of residency masks are possible to
estimate as:

memRM = p ·Mk

8 [Bytes],

where p is a number of objects, d is the dimension of space and M is a number
of the subdivision in one axis. The technique mentioned above allows a quick
determination of a potential intersection of the objects using logical AND operation
(land), i.e. if the object with residency mask RMi and the object with residency
mask RMj are intersected, then a condition:

RMi land RMj 6= [0, . . . , 0] i, j ∈ 1, . . . , p, (2.1)

where p is a number of object in space, is true. Therefore, if condition (2.1) is
false, then no intersection is possible for these objects.
This technique is useful for finding all cells which interfere with the given object.
The disadvantage of this technique is that if the number of subdivisions M is
higher and objects are small, then very long binary vectors are obtained containing
almost zeros.

2.2.2 Binary Mask (BM)

The binary masks [Ska12] are again represented by bit vectors. For simplicity, we
assume that we have two dimensional case. However, note that this approach is
generally extensible for d−dimensional space. Let us define iR, resp. jC, sets of
all objects that interfere with the given i−th row slice, resp. j−th column slice.
Then a set ijW is defined as:

ijW = iR ∩ jC (2.2)

15

and determines all object that can interfere with the subinterval at the (i, j)
position, see Figure 2.8.

Figure 2.8: Schema of binary mask [Ska12].

The sets iR, resp. jC, are represented using bit vectors in which each bit is used
for one object in the given space, i.e. k−th bit expresses whether the k−th object
interferes with the given slice, and length of bit vector is p, where p is a number
of objects in given space. Thus, term (2.2) is possible to express using bitwise
logical AND operation (land) as:

ijW = iR land jC i, j ∈ 1, . . . ,M , (2.3)

where M is a number of subdivision in one axis.
It can be seen that memory requirements of binary masks are given as:

memBM = d · p ·M
8 [Bytes],

where p is a number of objects, d is dimension of space and M is a number of
subdivision in one axis.
This technique is useful for finding all objects which interfere with the given cell.
Another advantage of binary masks is that we can easily check the consistency of
the given scene. Let us define:

X = ∪iR = [x1, . . . , xp], (2.4)

where p is number of objects. Then the k−th object is not contained in any
subinterval and the given scene is inconsistent if

∃k ∈ {1, . . . , p} : xk = 0.

Similarly the other axes are handled.

16

2.3 Summary

Sparse matrix formats are useful for sparse matrix-vector multiplication on GPU
which is one of the important operations for calculation of RBF methods. Moreover,
the quadtree data format allows the effective multiplication of sparse matrix by a
sparse matrix which can be applied for RBF approximation.
If we want to perform the approximation or interpolation of the given dataset
using the domain decomposition method, which is one of the possible approaches,
then we will certainly find a usage for the space subdivision techniques.

17

Chapter 3

Meshless Interpolation and
Approximation

Interpolation and approximation are probably the most frequent operations used
in computational techniques. Several techniques have been developed for data
interpolation or approximation, but an ordered dataset is mostly expected, e.g.
a rectangular mesh, a structured mesh, an unstructured mesh, etc. However,
in many engineering problems, data are not ordered and they are scattered in
d−dimensional space, in general. In fact, the conversion of a scattered dataset to
a semi-regular grid is commonly performed in technical applications using some
tessellation techniques. However, this approach is quite prohibitive for the case of
d−dimensional data due to the computational cost. Interesting techniques which
are appropriate for large scattered (unordered) datasets are meshless interpolation
resp. approximation. These meshless techniques do not require conversion to a
semi-regular grid.
The RBF techniques are based on the distance between two points and lead to a
solution of a linear system of equations.

3.1 Radial Basis Function (RBF)

Radial basis functions (RBFs) are traditional and powerful tools for the meshless
interpolation and approximation of scattered data. These functions are real-valued
functions which depend only on the distance from the fixed center point. More
precisely, let us consider an univariate function:

φ : [0,∞)→ R (3.1)
then the radial basis function Φi : Rd → R is defined as:

Φi(x) = φ(ri) = φ(‖x− xi‖), (3.2)

18

where {xi}Ni=1 ⊂ Rd is a set of N different points which are so-called the centers
and ‖.‖ is some norm in Rd. The Euclidean norm is usually used.
Name of RBF (specifically word radial) is based on the following property. The
value of Φ at any point at a certain fixed distance from the fixed center point is
constant, i.e.

‖x1‖ = ‖x2‖ ⇒ Φ(x1) = Φ(x2), x1,x2 ∈ Rd. (3.3)
Thus, Φ is radially (or spherically) symmetric around its center. Example of a
such function can be seen in Figure 3.1.

Figure 3.1: Example of RBF

Nice property of RBF interpolants is invariance for all Euclidean transformations
(i.e. translations, rotations and reflections). This means that it does not matter
whether we first compute the RBF interpolant and then apply a Euclidean
transformations, or if the transform of the data is performed first and then compute
the interpolant. This is a consequence of fact that Euclidean transformations are
2-norm-invariant.
There are two main groups of basis functions: global RBFs (e.g. [Duc77] and
[Sch79]) and “local” Compactly Supported RBFs (CS-RBFs) [Wen06]. Fitting
scattered data with CS-RBFs leads to a simpler and faster computation because
a system of linear equations has a sparse matrix. However, approximation using
CS-RBFs is sensitive to the density of approximated scattered data and to the
choice of a shape parameter. Global RBFs lead to a linear system of equation
with a dense matrix and their usage is based on sophisticated techniques, such
as, the fast multipole method [Dar00]. The global RBFs are useful in repairing
incomplete datasets, and they are less sensitive to the density of data. Table 3.1
presents typical examples of global RBFs and Table 3.2 presents examples of
“local” Wendland’s CS-RBFs. Note that the notation (1− αr)q+ means:

(1− αr)q+ =

(1− αr)q if 0 ≤ αr ≤ 1
0 if αr > 1

(3.4)

19

Table 3.1: Typical examples of global RBFs

Global RBF φ(r)

Gauss function [Sch79] e−(αr)2

Inverse Quadric (IQ) 1
1+(αr)2

Inverse Multiquadric (IMQ) 1√
1+(αr)2

Multiquadric (MQ)
√

1 + (αr)2

Thin-Plate Spline (TPS) [Duc77] (αr)2log(αr)

and α is a shape parameter. Figure 3.2 shows behavior of selected Wendland’s
CS-RBFs for shape parameter α = 1; on the x axis is a radius value r (negative
part is just for illustration of the symmetry properties).

Table 3.2: Typical examples of “local” Wendland’s CS-RBFs [Wen95]

ID CS-RBF φ(r)
1 Wendland’s φ1,0 (1− αr)+

2 Wendland’s φ1,1 (1− αr)3
+(3αr + 1)

3 Wendland’s φ1,2 (1− αr)5
+(8(αr)2 + 5αr + 1)

4 Wendland’s φ3,0 (1− αr)2
+

5 Wendland’s φ3,1 (1− αr)4
+(4αr + 1)

6 Wendland’s φ3,2 (1− αr)6
+(35(αr)2 + 18αr + 3)

7 Wendland’s φ3,3 (1− αr)8
+(32(αr)3 + 25(αr)2 + 8αr + 1)

8 Wendland’s φ5,0 (1− αr)3
+

9 Wendland’s φ5,1 (1− αr)5
+(5αr + 1)

10 Wendland’s φ5,2 (1− αr)7
+(16(αr)2 + 7αr + 1)

20

Figure 3.2: Geometrical properties of CS-RBFs [Ska13]

3.2 RBF Interpolation Methods

We assume that we have an unordered dataset {xi}N1 ∈ E2. However, this
approach is applicable for d−dimensional space, in general. Moreover, each point
xi is associated with vector hi ∈ Ep of the given values, where p is dimension of
vector, or scalar value hi ∈ E1. For an explanation of the RBF interpolation, we
consider the case when each point xi is associated with scalar value hi. The RBF
interpolation is based on computing the distance of two points xi and xj from
the dataset.

3.2.1 RBF Interpolation

In this section, the RBF interpolation method, recently introduced e.g. in [Fas07]
(Chapter 2), [ALP14], [Ska15], etc., and its properties are described.
The interpolated value can be determined as:

f(x) =
N∑
j=1

cjφ(rj) =
N∑
j=1

cjφ(‖x− xj‖), (3.5)

where the interpolating function f(x) is represented as a sum of N RBFs, each
centered at a different data point xj, and weighted by an appropriate weight cj.
It can be seen, to solve the interpolation problem, the distance matrix and a
radial basis expansion are used. This leads to solve a linear system of equations

21

for the given dataset:

hi = f(xi) =
N∑
j=1

cjφ(‖xi − xj‖) =
N∑
j=1

cjφi,j i = 1, . . . , N . (3.6)

This linear system of equation can be represented as the matrix equation:

Ac = h, (3.7)

where matrix A is symmetric matrix. Equation (3.7) can be expressed in the
form:

φ1,1 · · · φ1,i · · · φ1,N
...
φi,1 · · · φi,i · · · φi,N
...

φN,1 · · · φN,i · · · φN,N

c1

...
ci
...
cN

 =

h1

...
hi
...
hN

 . (3.8)

This linear system of equations can be solved by the Gauss elimination method,
the LU decomposition, etc.

3.2.2 RBF Interpolation with Polynomial Reproduction

The method which was introduced in Section 3.2.1 can theoretically have problems
with stability and solvability because there is not guaranteed that the matrix of
linear system is well-conditioned. Therefore, the radial basis function expression is
extended by polynomial function Pk(x) of degree k. This approach was introduced
e.g. in [Fas07] (Chapter 6), [Ska13], [ALP14], etc.
The RBF interpolation of the given dataset can be analytically expressed by using
this approach as:

f(x) =
N∑
j=1

cjφ(rj) + Pk(x) =
N∑
j=1

cjφ(‖x− xj‖) + Pk(x), (3.9)

where xj is point from the given dataset at which RBF is centered. Now, the
vector of weights c = (c1, . . . , cN)T has to be necessary determined.
In practice, a linear polynomial P1(x), i.e. polynomial of first order, is used. Thus,
the following linear system of equations is obtained:

hi = f(xi) =
N∑
j=1

cjφ(‖xi − xj‖) + axxi + ayyi + a0

=
N∑
j=1

cjφi,j + axxi + ayyi + a0 i = 1, . . . , N , (3.10)

22

where vector xi is given as xi = (xi, yi)T and vector a = (ay, ay, a0)T is vector of
linear polynomial coefficients. However, now we have N + 3 unknowns, namely
the vector of weights c = (c1, . . . , cN)T and vector of linear polynomial coefficients
a = (ay, ay, a0)T , and we have only N conditions to determine them, namely the
linear system (3.10). Therefore, additional conditions must be found. Specifically,
we can add the following conditions:

N∑
i=1

ci = 0
N∑
i=1

cixi = 0. (3.11)

It leads to the square linear system of equations which is possible represented by
matrix form: (

A P
P T 0

)(
c
a

)
=
(
h
0

)
(3.12)

and can be solved by the Gauss elimination method, the LU decomposition, etc.

3.2.3 Regularized RBF Interpolation

Sometimes, it may happen that the RBF interpolation result (Section 3.2.1) will
pass through the given dataset, but somewhere else this RBF result will behave
unpredictably, e.g. Figure 3.3. Intuitively, this may be due to the fact that the

Figure 3.3: Illustration of ill-conditioning and regularization. Top: From left to
right, the regularization parameter is 0, 0.01 and 0.1. Note, the vertical scale is
changing. Bottom: The geometry of this interpolation problem. The data are
zero at the corners of a square with a single non-zero value in the center [ALP14].

23

matrix is divided by “nearly zero” somewhere, resulting in large overshoots. This
behavior occurs when the matrix of the linear system (3.7) is not singular, but is
poorly conditioned. In the case mentioned above, a simple solution is to apply
the regularization, see e.g. [EPP00], thus, obtaining a minimization problem.
The result of this minimization problem can be expressed by following matrix
equation:

(ATA+ ωI)c = ATf , (3.13)

where ω is the regularization parameter and I is the identity matrix. The
regularization parameter ω is chosen as a very small adjustable number such as
0.00001.

3.2.4 Summary

The disadvantage of RBF interpolation is large and usually ill-conditioned matrix
of the linear system of equations. Moreover, in the case of an oversampled dataset
or intended reduction; we want to reduce the given problem, i.e. reduce the number
of weights and used basis functions, and, furthermore, preserve good precision of
the approximated solution. The approach, which includes the reduction, is called
a RBF approximation, and will be described in following.

3.3 RBF Approximation Methods

For simplicity, we assume that we have an unordered dataset {xi}N1 in E2. However,
note that this approach is generally applicable for d-dimensional space. Further,
each point xi from the dataset is associated with vector hi ∈ Ep of the given
values, where p is the dimension of the vector, or scalar value hi ∈ E1. For an
explanation of the RBF approximation, let us consider the case when each point
xi is associated with scalar value hi, e.g. a 2 1/2D surface. Let us introduce a set
of new reference points {ξj}M1 , see Figure 3.4.

Given points x
New reference points ξ

Figure 3.4: RBF approximation and reduction of points.

24

These reference points may not necessarily be in a uniform grid. It is appropriate
that their placement reflects the given surface (e.g. the terrain profile, etc.) as
well as possible. The number of added reference points ξj is M , where M � N .
The RBF approximation is based on computing the distance of given point xi
and reference point ξj.

3.3.1 RBF Approximation

In this section, the RBF approximation method, which was recently introduced
in [Ska13], and its properties are decribed.
The approximated value can be determined similarly as for interpolation (see
[Ska13]):

f(x) =
M∑
j=1

cjφ(rj) =
M∑
j=1

cjφ(‖x− ξj‖), (3.14)

where the approximating function f(x) is represented as a sum of M RBFs, each
associated with a different reference point ξj, and weighted by an appropriate
coefficient cj.
It can be seen that we get an overdetermined linear system of equations for the
given dataset:

hi = f(xi) =
M∑
j=1

cjφ(‖xi − ξj‖) =
M∑
j=1

cjφi,j i = 1, . . . , N . (3.15)

The linear system of equations (3.15) can be represented as the matrix equation:

Ac = h, (3.16)

where the number of rows is N �M and M is the number of unknown weights
[c1, . . . , cM]T , i.e. the number of reference points. (3.16) can be expressed in the
form:

φ1,1 · · · φ1,M
...
φi,1 · · · φi,M
...

φN,1 · · · φN,M

c1

...
cM

 =

h1

...
hi
...
hN

 . (3.17)

Thus, the presented system is overdetermined, i.e. the number of equations N is
higher than number of variables M . This linear system of equations can be solved
by the least squares method as ATAc = ATh or singular value decomposition,
etc.

25

3.3.2 RBF Approximation using Lagrange Multipliers

The RBF approximation introduced by Fasshauer [Fas07] (Chapter 19) is based
on Lagrange multipliers. In this section, the properties of this method will be
briefly summarized.
This RBF approximation is formulated as a constrained quadratic optimization
problem. The goal of this method is to approximate the given dataset by function:

f(x) =
M∑
j=1

cjφ(‖x− ξj‖), (3.18)

where the approximating function f(x) is represented as a sum of M RBFs, each
associated with a different reference point ξj, and weighted by an appropriate
coefficient cj. Therefore, it is necessary to determine the vector of weights
c = (c1, . . . , cM)T , which leads to the minimization of the quadratic form:

1
2c

TQc, (3.19)

where Q is some M ×M symmetric positive definite matrix. This quadratic form
is minimized subject to the N linear constraints Ac = h, where A is an N ×M
matrix with full rank, and the right-hand side h = (h1, . . . , hN)T is given. Thus,
the constrained quadratic minimization problem can be described as a linear
system of equations:

F (c,λ) = 1
2c

TQc− λT (Ac− h), (3.20)

where λ = (λ1, . . . , λN)T is the vector of Lagrange multipliers, and we need to
find the minimum of (3.20) with respect to c and λ. This leads to solving the
following system:

∂F (c,λ)
∂c

= Qc−ATλ = 0

∂F (c,λ)
∂λ

= Ac− h = 0 (3.21)

or, in matrix form: (
Q −AT

A 0

)(
c
λ

)
=
(
0
h

)
, (3.22)

where Qi,j = φ(‖ξi − ξj‖) and Q is a symmetric matrix. (3.22) is then solved.
It should be noted that we want to minimize M in order to reduce the computa-
tional cost of the approximated value f(x) as much as possible.

26

3.3.3 Original RBF Approximation with Polynomial Re-
production

The method which was introduced in Section 3.3.1 can theoretically have problems
with stability and solvability. Therefore, the RBF approximant (3.14) is usually
extended by polynomial function Pk(x) of degree k. The original approach of
RBF approximation with polynomial reproduction was introduced by Fasshauer
[Fas07] (Chapter 19.4).
The goal of this approach is to approximate the given dataset of N points by
function:

f(x) =
M∑
j=1

cjφ(‖x− ξj‖) + Pk(x). (3.23)

where ξj are reference points specified by a user. Now, it is necessary to determine
the vector of weights c = (c1, . . . , cM)T . It is achieved by solving an overdetermined
linear system of equations:

hi = f(xi) =
M∑
j=1

cjφ(‖xi − ξj‖) + Pk(xi)

=
M∑
j=1

cjφi,j + Pk(xi) i = 1, . . . , N , (3.24)

where xi is point from the given dataset and is associated with scalar value hi.
In practice, a linear polynomial:

P1(x) = aTx+ a0 (3.25)

is used and additional conditions are applied:
M∑
i=1

ci = 0
M∑
i=1

ciξi = 0. (3.26)

Geometrically, the coefficient a0 determines the placement of the hyperplane and
the expression aTx represents the inclination of the hyperplane.
It can be seen that for d-dimensional space a linear system of (N+d+1) equations
in (M + d + 1) variables has to be solved, where N is number of points in the
given dataset, M is number of reference points and d is dimensionality of data.
For d = 2 vectors xi, ξj and a are given as xi = (xi, yi)T , ξj = (ξj, ηj)T and
a = (ax, ay)T . Thus, for E2 and the given dataset we can write this linear system
of equations in the following matrix form:

(
A P
Ξ 0

) ca
a0

 =
(
h
0

)
. (3.27)

27

This system is overdetermined (M � N) and can be solved by the least squares
method as: (

ATA+ ΞTΞ ATP
P TA P TP

) ca
a0

 =
(
ATh
P Th

)
(3.28)

where

ATA+ ΞTΞ =

N∑
i=1

φi1φi1 + ξ1 · ξ1 + 1 · · ·
N∑
i=1

φi1φiM + ξ1 · ξM + 1
...

N∑
i=1

φiMφi1 + ξM · ξ1 + 1 · · ·
N∑
i=1

φiMφiM + ξM · ξM + 1

P TA = (ATP)T =

N∑
i=1

xiφi1 · · ·
N∑
i=1

xiφiM

N∑
i=1

yiφi1 · · ·
N∑
i=1

yiφiM

N∑
i=1

φi1 · · ·
N∑
i=1

φiM

ATh =

N∑
i=1

φi1hi

...
N∑
i=1

φiMhi

P TP =

N∑
i=1

x2
i

N∑
i=1

xiyi
N∑
i=1

xi

N∑
i=1

yixi
N∑
i=1

y2
i

N∑
i=1

yi

N∑
i=1

xi
N∑
i=1

yi
N∑
i=1

1

P Th =

N∑
i=1

xihi

N∑
i=1

yihi

N∑
i=1

hi

It should be noted that additional conditions (3.26) introduce inconsistency to
the least squares method. Specifically, the inconsistency is caused by the adding
the term ΞTΞ to ATA. Therefore, the mentioned RBF approximation with the
linear reproduction is inconveniently formulated as it mixes variables which have
a different physical meaning. Thus, we propose another approach in the following
section.

3.3.4 Proposed RBF Approximation with Polynomial Re-
production

The method which was introduced in Section 3.3.3 can establish inconsistency to
the RBF approximation method as mentioned above. Therefore, we introduce

28

another approach [MS16a] in this section.
The approximated value can be expressed as:

f(x) =
M∑
j=1

cjφ(‖x− ξj‖) + Pk(x). (3.29)

where ξj are reference points specified by a user. The approximating function
f(x) is represented as a sum ofM RBFs, each associated with a different reference
point ξj, and weighted by an appropriate coefficient cj, and Pk(x) is polynomial
function of degree k. For simplicity, we assume that we have linear polynomial:

P1(x) = aTx+ a0. (3.30)

However, note that this approach is generally applicable for the arbitrary polyno-
mial function.
Now it can be seen that for E2, linear polynomial and given dataset, we get
following overdetermined linear system of equations:

Ac+ Pk = h, (3.31)

where Aij = φ(‖xi−ξj‖) is entry of matrix in the i−th row and j−th column, c =
(c1, . . . , cM)T is the vector of weights, Pi = (xTi , 1)T is the vector, k = (aT , a0)T
is vector of coefficient for linear polynomial and h = (h1, . . . , hN)T is vector of
values in the given points.
The error is then defined as:

R = ‖Ac+ Pk − h‖, (3.32)

then
R2 = (Ac+ Pk − h)T (Ac+ Pk − h)

= cTATAc+ kTP TPk + 2cTAT (Pk − h)− 2kTP Th+ hTh.
(3.33)

Our goal is to minimize the square of error, i.e. find the minimum of R2 (3.33).
This minimum is obtained by differentiating of equation (3.33) with respect to c
and k and finding the zeros of those derivatives. It leads to equations:

∂R2

∂c
= 2(ATAc+ATPk −ATh) = 0,

∂R2

∂k
= 2(P TAc+ P TPk − P Th) = 0,

(3.34)

which leads to a system of linear equations:(
ATA ATP
P TA P TP

)(
c
k

)
=
(
ATh
P Th

)
, (3.35)

29

i.e.
Qγ = f . (3.36)

The matrix Q is a (M + 3)× (M + 3) symmetric positively semidefinite matrix.
The equation (3.35) can be expressed in the form:

N∑
i=1

φi1φi1 · · ·
N∑
i=1

φi1φiM
N∑
i=1

φi1xi
N∑
i=1

φi1yi
N∑
i=1

φi1

...
N∑
i=1

φiMφi1 · · ·
N∑
i=1

φiMφiM
N∑
i=1

φiMxi
N∑
i=1

φiMyi
N∑
i=1

φiM

N∑
i=1

xiφi1 · · ·
N∑
i=1

xiφiM
N∑
i=1

x2
i

N∑
i=1

xiyi
N∑
i=1

xi

N∑
i=1

yiφi1 · · ·
N∑
i=1

yiφiM
N∑
i=1

yixi
N∑
i=1

y2
i

N∑
i=1

yi

N∑
i=1

φi1 · · ·
N∑
i=1

φiM
N∑
i=1

xi
N∑
i=1

yi
N∑
i=1

1

c1

...
cM
ax
ay
a0

=
(

N∑
i=1

φi1hi · · ·
N∑
i=1

φiMhi
N∑
i=1

xihi
N∑
i=1

yihi
N∑
i=1

hi

)T
(3.37)

where φij = φ(‖xi − ξj‖), point xi = (xi, yi)T and vector a = (ax, ay)T . It
can be seen that this approach eliminated the inconsistency introduced in the
Section 3.3.3.

3.4 RBF Approximation for Large Data

In practice, the real datasets contain a large number of points which results into
high memory requirements for storing the matrix A of the overdetermined linear
system of equations (3.16). For example, when dataset which contains 3, 000, 000
points, number of reference points is 10, 000, and the double precision floating
point is used, then we need 223.5 GB memory for storing the matrix A of the
overdetermined linear system of equations (3.16). Unfortunately, we do not have an
unlimited capacity of RAM memory, therefore, the calculation of unknown weights
cj for RBF approximation would be prohibitively computationally expensive due
to memory swapping, etc. In this section, a proposed solution to this problem
[MS16b] is described.
In Section 3.3.1, it was introduced that overdetermined system of equations can be

30

solved by the least squares method. For this method the square M ×M matrix:

B = ATA (3.38)

is to be determined. Advantages of matrix B are that it is a symmetric matrix
and, moreover, only two vectors of length N are needed for determination of one
entry, i.e.:

bij =
N∑
k=1

φki · φkj, (3.39)

where bij is entry of matrix B in the i−th row and j−th column.
To save memory requirements and data bus (PCI) load, block operations with
matrices are used. Based on the above properties of matrix B, only the upper
triangle of this matrix is computed. Moreover, the matrix is partitioned into
MB ×MB blocks, see Figure 3.5, and the calculation is performed sequentially
for each block:

Bkl = (A∗,k)T (A∗,l)

k = 1, . . . , M
MB

, l = k, . . . ,
M

MB

,
(3.40)

where Bkl is sub-matrices in the k−th row and l−th column and A∗,k is defined
as:

A∗,k =

φ1,(k−1)·MB+1 · · · φ1,k·MB...
φi,(k−1)·MB+1 · · · φi,k·MB...
φN,(k−1)·MB+1 · · · φN,k·MB

 . (3.41)

Figure 3.5: M ×M square matrix which is partitioned into MB ×MB blocks.
The color red is used to denote the main diagonal of matrix and illustrates the
symmetry of matrix. The color green is used to denote the blocks which must be
computed.

31

The size of block MB is chosen so that MB is multiple of M and there is no
swapping, i.e.:

MB · (MB + 2 ·N) · prec < size of RAM [B], (3.42)

where prec is the size of data type in bytes.
Note that this approach is possible to modify easily for RBF approximation with
polynomial reproduction Section 3.3.3 and Section 3.3.4.

3.5 Experimental Results of RBF Approxima-
tion

The presented methods of the RBF approximation have been tested on synthetic
and real datasets. Moreover, different radial basis functions with shape parameter
α and different sets of reference points have been used for testing. These types of
distribution are described in Section 3.5.1. The presented results are based on
results which are introduced in [MS16a], [MS16b], [Maj16] and [MS].

3.5.1 Types of Reference Points Distribution

The following sets of reference points were used for experiments on synthetic
datasets:

Points on regular grid
This set contains the points on a regular grid in E2.

Epsilon points
This distribution of reference points is described in the following text.

Epsilon points + AABB corners
This set of points is determined in the same manner as the previous case.
Moreover, the corners of axis aligned bounding box (AABB) of Epsilon
points are added to the set of reference points.

Halton points
This distribution of points is described in the following text in detail. How-
ever, note that this set of reference points equals the subset of the given
dataset, for which we determine the RBF approximation.

Halton points + AABB corners
This set of reference points is determined in the same manner as Halton
points. Moreover, the corners of AABB are added to this set.

32

Halton points

Construction of a Halton sequence is based on a deterministic method. This
sequence generates well-spaced “draws” points from the interval [0, 1]. The
sequence uses a prime number as its base and is constructed based on finer
and finer prime-based divisions of sub-intervals of the unit interval. The Halton
sequence [Fas07] can be described by the following recurrence formula:

Halton(p)k =
blogpkc∑
i=0

1
pi+1

(⌊
k

pi

⌋
mod p

)
, (3.43)

where p is the prime number and k is the index of the calculated element.
For the E2 space, subsequent prime numbers are used as a base. In this test,
{2, 3} were used for the Halton sequence and the following sequence of points in
a rectangle (a, b) was derived:

Halton(2, 3) =
{(1

2a,
1
3b
)
,
(1

4a,
2
3b
)
,
(3

4a,
1
9b
)
,
(1

8a,
4
9b
)
,
(5

8a,
7
9b
)
,

(3
8a,

2
9b
)
,
(7

8a,
5
9b
)
,
(1

16a,
8
9b
)
,
(9

16a,
1
27b

)
, . . .

}
, (3.44)

where a is the width of the rectangle and b is the height of the rectangle.
Visualization of the dataset with 103 points of the Halton sequence from (3.44)
can be seen in Figure 3.6. We can see that the Halton sequence in E2 space covers
this space more evenly than randomly distributed uniform points in the same
rectangle.

Figure 3.6: Halton points in E2 generated by Halton(2, 3) (left) and random
points in a rectangle with uniform distribution (right). The number of points is
103 in both cases.

33

Epsilon points

This is a special distribution of points in E2, which is based on a regular grid.
Each point is determined as follows:

Pij =
[
i ·∆x+ rand(−εx, εx), j ·∆y + rand(−εy, εy)

]
,

εx ≈ 0.25 ·∆x, i = 0, . . . , Nx,
εy ≈ 0.25 ·∆y, j = 0, . . . , Ny,

(3.45)

where ∆x and ∆y are real numbers representing the grid spacing, Nx indicates
the number of grid columns, Ny is the number of grid rows and rand(−εx, εx) or
rand(−εy, εy) is a random drift with a uniform distribution from −εx to εx or
from −εy to εy.
Figure 3.7 presents the dataset with 40× 25, (i.e. 103) epsilon points. Moreover,
we can see the comparison of this distribution of points with points on a regular
grid.

S
Figure 3.7: Epsilon points (left) and points on a 2D regular grid (right). The
number of points is 40× 25 = 103 in both cases.

3.5.2 Synthetic Datasets

A Halton distribution of points was used for synthetic data. Moreover, each point
from such a dataset is associated with a function value at this point. For this
purpose, different functions have been used for experiments. Results for those two
functions are presented here. The first is a 2D sinc function, see Figure 3.8, and
the second is Franke’s function [Fra79], see Figure 3.9.

Comparison of RBF Approximation Methods with Polynomial Repro-
duction

In this section, the original RBF approximation with polynomial reproduction, see
Section 3.3.3, and proposed RBF approximation with polynomial reproduction,

34

(a) sx = 1000, sy = 500

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

yx

(b) sx = 1, sy = 1

Figure 3.8: 2D sinc function sinc(πx
sx

) · sinc(πy
sy

) whose domain is restricted to
[0, sx]× [0, sy].

Figure 3.9: Franke’s function whose domain is restricted to [0, 1000]× [0, 600].

see Section 3.3.4, are compared. An example of the RBF approximation of 1089
Halton data points sampled from a 2D sinc function, for a Halton set of reference
points which consists of 81 points, using both approaches is shown in Figure 3.10.
The graphs are false-colored according to the magnitude of the error.
A further example of the RBF approximation of 4225 Halton data points sampled
from a Franke’s function and for a set of reference points which consists of 289
points on a regular grid, using both approaches is shown in Figure 3.11. The
graphs are again false-colored by magnitude of the error.
It can be seen that the original RBF approximation with a linear reproduction
returns a worse result in terms of the error in comparison with the proposed RBF
approximation with a linear reproduction. Moreover, we can see from Figure 3.10

35

(a) Original approach (b) Proposed approach

Figure 3.10: Approximation of 1089 data points sampled from a 2D sinc function,
i.e. sinc

(
πx

1000

)
· sinc

(
πy
500

)
, where (x, y) ∈ [0, 1000]× [0, 500], with 81 Halton-spaced

Gaussian functions with α = 0.001, false-colored by magnitude of the error.

(a) Original approach (b) Proposed approach

Figure 3.11: Approximation of 4225 points sampled from a Franke’s function with
289 regularly spaced IQ with α = 0.005, false-colored by magnitude of the error.

36

and Figure 3.11 that for the presented cases the maximum magnitude of
the error for the original approach is approximately two times greater
than the maximum magnitude of the error for the proposed approach.
This raises the question how the RBF approximation depends on the shape
parameter α selection. Many papers have been published about choosing the
optimal shape parameter α, e.g. [Fra82], [Rip99], [FZ07], [Sch11]. In the following,
a comparison depending on the choice of shape parameter α is performed.
Figure 3.12 presents the ratio of mean error of the original RBF approximation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1E-4 1E-3 1E-2

ra
ti

o
of

 m
ea

n
er

ro
r

shape parametr α

Halton points

TPS Gauss IQ

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1E-4 1E-3 1E-2

ra
ti

o
of

 m
ea

n
er

ro
r

shape parametr α

Epsilon points

TPS Gauss IQ

(b)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1E-4 1E-3 1E-2

ra
ti

o
of

 m
ea

n
er

ro
r

shape parametr α

Points on regular grid

Gauss TPS IQ

(c)

Figure 3.12: The ratio of the mean error of the original approach to the mean error
of the proposed approach of RBF approximation of 1089 data points sampled from
a 2D sinc function with 81 reference points for different RBFs and different shape
parameters. The used sets of reference points are: Halton points (a), Epsilon
points (b) and points on a regular grid (c).

37

with the linear reproduction to the mean error of the proposed RBF approximation
with the linear reproduction, i.e.:

ratio = mean errororiginal
mean errorproposed

, (3.46)

for a dataset which consists of 1089 Halton points in the range [0, 1000]× [0, 500],
sampled from a 2D sinc function. The set of reference points contains 81 points
with different behavior of the distribution, and for different global RBFs. Graphs
in Figure 3.12 represent the experimentally obtained ratio according to the shape
parameter α of the used RBFs.
We can see that for the TPS, the mean errors of the proposed approach are
significantly smaller than those of the original approach (ratio is greater than
one). Furthermore, this ratio is not significantly different for the different shape
parameters α. The proposed RBF approximation gives better results than the
original approach in terms of the mean error for the Gaussian function and epsilon
reference points. The proposed approach is also better, with five exceptions, in
the remaining cases.
The experiments prove that the proposed approach to the RBF approximation is
correct and gives better and more stable results than the original approach, see
Section 3.3.3. Therefore, in the following we will use only proposed approach, see
Section 3.3.4.

Examples of RBF Approximation Results

Some examples of the RBF approximation to 1089 Halton data points sampled
from a 2D sinc function, for a Halton set of reference points, which consists of 81
points, and different RBFs are shown in Figure 3.13.
It can be seen that the RBF approximation using Lagrange multiplies (Fasshauer
[Fas07]) returns the worst result in terms of the error in comparison with the
proposed methods. Moreover, in Figure 3.13 (b), (d) and (f) it can also be seen
that using the TPS brings the biggest error to the result.
There is a question how the RBF approximation depends on the α value selection.
Consequently, it is described in the following section.

38

RBF approximation

(a) Gauss, α = 1, Halton points (b) TPS, α = 1, Halton points

RBF approximation with linear reproduction

(c) Gauss, α = 1, Halton points (d) TPS, α = 1, Halton points

RBF approximation using Lagrange multipliers

(e) Gauss, α = 1, Halton points (f) TPS, α = 1, Halton points

Figure 3.13: Approximation to 1089 data points sampled from a 2D sinc function
with 81 Halton spaced basis functions false-colored by magnitude of error. Note,
the scale is changing.

39

Comparison of Methods

In this section, the different versions of RBF approximation which were presented
in Section 3.3.1, Section 3.3.2 and Section 3.3.4 are compared. Figure 3.14
presents the mean error of the RBF approximation for the dataset, which consists
of 1089 Halton points in the range [0, 1]× [0, 1], sampled from a 2D sinc function,
while the set of reference points contains 81 points with Halton behavior of the
distribution, and for different global radial basis functions. The graphs represent
the mean error according to a shape parameter α of used RBFs. We can see
that we obtain a higher mean error for the RBF approximation using Lagrange
multipliers (Fasshauer [Fas07]). Mean errors for RBF approximation and RBF
approximation with linear reproduction are almost the same. Moreover, the

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0.0 0.5 1.0 1.5 2.0

m
ea

n
er

ro
r

shape parametr

Gaussian RBF, Halton points

approx approxMult approxLin

.E-9

.E-8

.E-7

.E-6

.E-5

.E-4

.E-3

.E-2

.E-1

E+0
0 0.5 1 1.5 2

shape parametr

reproduction, Halton

approxLin_trans

approxLin

α
.E-9

.E-8

.E-7

.E-6

.E-5

.E-4

.E-3

.E-2

.E-1

E+0
0 0.5 1 1.5 2

shape parameter

reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parametr

reproduction, Halton

approxLin_trans

approxLin

α

(a)

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0.0 0.5 1.0 1.5 2.0

m
ea

n
er

ro
r

shape parametr

IQ RBF, Halton points

approx approxMult approxLin

.E-9

.E-8

.E-7

.E-6

.E-5

.E-4

.E-3

.E-2

.E-1

E+0
0 0.5 1 1.5 2

shape parametr

reproduction, Halton

approxLin_trans

approxLin

α
.E-9

.E-8

.E-7

.E-6

.E-5

.E-4

.E-3

.E-2

.E-1

E+0
0 0.5 1 1.5 2

shape parameter

reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parametr

reproduction, Halton

approxLin_trans

approxLin

α

(b)

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

0.0 0.5 1.0 1.5 2.0

m
ea

n
er

ro
r

shape parametr

TPS RBF, Halton points

approx approxMult approxLin

.E-9

.E-8

.E-7

.E-6

.E-5

.E-4

.E-3

.E-2

.E-1

E+0
0 0.5 1 1.5 2

shape parametr

reproduction, Halton

approxLin_trans

approxLin

α
.E-9

.E-8

.E-7

.E-6

.E-5

.E-4

.E-3

.E-2

.E-1

E+0
0 0.5 1 1.5 2

shape parameter

reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parametr

reproduction, Halton

approxLin_trans

approxLin

α

(c)

Figure 3.14: The mean error of approximation to 1089 data points sampled
from a 2D sinc function with 81 reference Halton points for different RBF ap-
proximation methods, different RBFs and different shape parameters. The used
approximation methods are: RBF approximation (approx), RBF approximation
using Lagrange multipliers (approxMult) and proposed RBF approximation with
linear reproduction (approxLin). RBFs are: (a) Gauss function, (b) IQ, (c) TPS.

40

Gaussian RBF gives the best result for shape parameter α = 1 and the inverse
quadric for α = 0.5. Further, the TPS function is not appropriate to solve the
given problem, see Figure 3.14 (c). Note, the standard deviation of errors was
also measured and the same behavior and order of magnitude was obtained as for
the mean errors.

Comparison by Placement of the Dataset in E2

This section is focused on a placement of the actual dataset in the domain space,
and the used function generating associated scalar values in E2. The given dataset
has a range of one in both axes and the function generating associated scalar
values is a 2D sinc function. Two configurations for the placement of the origin of
the dataset and the maximum of the 2D sinc function were used. The first config-
uration is at point (0; 0); the second is moved to point (3, 951, 753; 2, 785, 412).
Figure 3.15 presents the mean error for these configurations, when the Gaussian
basis functions and Halton set of reference points were chosen. We can see that
the proposed RBF approximation with linear reproduction gives a higher error
for the second configuration, i.e. the placement at point (3, 951, 753; 2, 785, 412).
The decision is not ambiguous for RBF approximation using Lagrange multiplier.
Note that a graph for the RBF approximation is not presented because both
configurations give the same results.

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parameter

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parameter

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0.0 0.5 1.0 1.5 2.0

m
ea

n
er

ro
r

shape parametr

Gaussian RBF using Lagrange
multipliers, Halton

approxM_trans

approxM

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parameter

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α

Figure 3.15: The mean error of approximation to 1089 data points sampled from a
2D sinc function with 81 spaced Gaussian basis functions for a Halton set of refer-
ence points, different RBF approximation methods and different shape parameters.
The placement of the given dataset and the maximum of the 2D sinc function are
at point (0; 0) (circles) or at point (3, 951, 753; 2, 785, 412) (squares). Versions of
approximation are proposed RBF approximation with linear reproduction (left)
and RBF approximation using Lagrange multipliers (right).

41

Comparison of Different Distribution of Reference Points

In this section, we focus on a comparison of the presented RBF approximation
methods due to used distribution of reference points. Measurements of errors were
performed for different type of RBFs with different shape parameters. Mean error
according to shape parameter α for Gaussian RBF is presented in Figure 3.16.
We can see that for all versions of RBF approximation the worst result is obtained

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0.0 0.5 1.0 1.5 2.0

m
ea

n
er

ro
r

shape parametr

Gaussian RBF

h
haabb
eps
epsaabb
u

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parameter

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α

(a)

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction

h
haabb
eps
epsaabb
u

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parameter

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α

(b)

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

0.0 0.5 1.0 1.5 2.0

m
ea

n
er

ro
r

shape parametr

Gaussian RBF using Lagrange
multipliers

h
haabb
eps
epsaabb
u1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α
1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

shape parameter

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

1.E-9

1.E-8

1.E-7

1.E-6

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0
0 0.5 1 1.5 2

m
ea

n
er

ro
r

shape parametr

Gaussian RBF with linear
reproduction, Halton

approxLin_trans

approxLin

α

(c)

Figure 3.16: The mean error of approximation to 1089 data points sampled
from a 2D sinc function with 81 spaced Gaussian basis functions for different
RBF approximation methods, different shape parameters and different sets of
reference points. The sets of reference points are: Halton points (h), Halton
points + AABB (haabb), epsilon points (eps), epsilon points + AABB (epsaabb),
points on a regular grid (u). Their description is in Section 3.5.1. Versions of
approximation are: (a) RBF approximation, (b) proposed RBF approximation
with linear reproduction, (c) RBF approximation using Lagrange multipliers.

42

for reference points on a regular grid (u). For the RBF approximation, the
remaining sets of reference points give almost the same results. Reference points
corresponding to epsilon points + AABB (epsaabb) almost always give the best
result for proposed RBF approximation with linear reproduction. For RBF
approximation using Lagrange multipliers, the best results are for the reference
points which have a Halton distribution.

Optimal Number of Reference Points

This section focuses on the influence of the number of reference points. The number
of reference points is determined relative to the number of points in the given
dataset. Measurements for different shape parameters were performed many times,
and average mean errors were computed, see Figure 3.17 - Figure 3.19. Note that
the reference points were distributed by Halton distribution. Figure 3.17 presents
the mean error for the Gaussian RBF approximation. Experimental results for
the IQ are shown in Figure 3.18. We can see that the mean errors are almost
constant for the small shape parameter α. However, the mean error decreases
with the increasing number of reference points for greater shape parameters.

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

m
ea

n
er

ro
r

ratio(M/N)

Gaussian RBF

0.25 0.35 0.50 0.71 1.00
1.41 2.00 2.83 4.00

Figure 3.17: The mean error of the RBF approximation to 1089 data points
sampled from a 2D sinc function for different numbers of reference points, Gaussian
RBF with different shape parameters α.

Figure 3.19 presents experimental results obtained for TPS. We can see that the
mean error decreases with the increasing number of reference points as would be
expected.

43

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

m
ea

n
er

ro
r

ratio(M/N)

IQ

0.25 0.35 0.50 0.71 1.00
1.41 2.00 2.83 4.00

Figure 3.18: The mean error of the RBF approximation to 1089 data points
sampled from a 2D sinc function for different numbers of reference points, IQ
RBF with different shape parameters α.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

m
ea

n
er

ro
r

ratio(M/N)

TPS

0.25 0.35 0.50 0.71 1.00
1.41 2.00 2.83 4.00

Figure 3.19: The mean error of the RBF approximation to 1089 data points
sampled from a 2D sinc function for different numbers of reference points, TPS
RBF with different shape parameters α.

Finally, note that the results for proposed RBF with linear reproduction are very
similar to the RBF approximation. The RBF using Lagrange multipliers has
unpredictable behavior and no trend can be established.

44

Comparison of CS-RBFs

The RBF approximation method presented above, see Section 3.3.1, has been
tested on the dataset with 1089 Halton points and each point is associated with a
value from Franke’s function [Fra79]. The set of reference points is a subset of the
given dataset, for which we determine the RBF approximation, and its cardinality
is 81. Moreover, reference points are uniformly distributed within a given area.
All CS-RBFs from the catalog of RBFs in [Fas07] (see D.2.7) have been used for
experiments. Depending on the quality, the obtained results are divided into three
groups. Results are presented for the representative of each group, i.e. Wendland’s
φ3,0, Wendland’s φ3,1 and Wendland’s φ3,3, see Table 3.2.
The shape parameters α for used CS-RBFs were determined experimentally with
regard to the quality of approximation, and they are presented in Table 3.3.

Table 3.3: Experimentally determined shape parameters α for the synthetic
dataset and the used CS-RBFs

CS-RBF shape parameter
Wendland’s φ3,0 α = 0.707
Wendland’s φ3,1 α = 0.500
Wendland’s φ3,3 α = 0.250

In Figure 3.20, the approximations of the given dataset for all CS−RBFs are
shown. In this figure, the surfaces are false-colored by the magnitude of the error.
It can be seen that for the given dataset the RBF approximation with Wendland’s
φ3,3 basis function returns the best result in terms of the error. Contrary, the worst
result is obtained for RBF approximation with Wendland’s φ3,0 basis function.

Figure 3.20: Wendland’s RBF φ3,0, α = 0.707 (left); Wendland’s RBF φ3,1,
α = 0.500 (center) and Wendland’s RBF φ3,3, α = 0.250 (right)

45

Table 3.4: The RBF approximation error for the testing dataset and different
radial basis functions.

Error
Wendland’s

φ3,0 φ3,1 φ3,3

mean absolute error 0.0041 0.0021 0.0019
deviation of error 1.92E-5 6.06E-6 5.25E-6
mean relative error [%] 0.0151 0.0076 0.0072

Table 3.4 shows three different error measures of the dataset depending on the
chosen basis functions: the mean absolute error, the deviation and the mean
relative error.

3.5.3 Real Datasets

The presented modification of the RBF approximation for large data Section 3.4
has been tested on real data. Let us introduce results for two real datasets.
The first dataset was obtained from LiDAR data of the Serpent Mound in Adams
Country, Ohio1. The second dataset is LiDAR data of the Mount Saint Helens in
Skamania Country, Washington1. Each point of these datasets is associated with
its elevation. The summary of the dimensions of terrain for the given datasets is
in Table 3.5.

Table 3.5: Summary of the dimensions of terrain for tested datasets. Note that
one feet [ft] corresponds to 0.3048 meter [m].

Dimensions Serpent Mound St. Helens
number of points 3, 265, 110 6, 743, 176
number of ref. pts. 10, 000 10, 000
lowest point [ft] 166.7800 3, 191.5269
highest point [ft] 215.4800 8, 330.2219

width [ft] 1, 085.1199 26, 232.3696
length [ft] 2, 698.9601 35, 992.6861

For experiments, two different radial basis functions have been used. These RBFs
are Gauss function, see Table 3.1, and Wendland’s φ3,1, see Table 3.2. Shape
parameters α for used RBFs were determined experimentally with regard to the

1http://www.liblas.org/samples/

46

http://www.liblas.org/samples/

quality of approximation and they are presented in Table 3.6. Note that value of
shape parameter α is inversely proportional to range of datasets.

Table 3.6: Experimentally determined shape parameters α for used RBFs

RBF
shape parameter

Serpent Mound St. Helens
Gaussian RBF α = 0.05 α = 0.0004
Wendland’s φ3,1 α = 0.01 α = 0.0001

The set of reference points equals to the subset of the given dataset for which the
RBF approximation is determined. Moreover, the distribution of reference points
is uniform.
Approximation of Mount Saint Helens for both RBFs and its original are shown in
Figure 3.21a-3.21c. In Figure 3.21b, it can be seen that the RBF approximation
with the global Gaussian RBFs cannot preserve the sharp rim of a crater. Further,
the magnitude of error visualization at each point of the original point cloud is

(a) Original (b) Gauss, α = 0.0004 (c) Wendland’s φ3,1, α = 0.0001

(d) Original (e) Gauss, α = 0.05 (f) Wendland’s φ3,1, α = 0.01

Figure 3.21: Mount Saint Helens is Skamania Country, Washington (top) and
Serpent Mound in Adams Country, Ohio (bottom)

47

(a) Gauss, α = 0.0004 (b) Wendland’s φ3,1, α = 0.0001

Figure 3.22: Approximation of Mount Saint Helens with 10, 000 radial basis
functions false-colored by magnitude of error.

presented in Figure 3.22. It can be seen that the RBF approximation with the
global Gaussian RBFs returns worse result than RBF approximation with local
Wendland’s φ3,1 basis functions in terms of the error. Not only, the value of the
mean absolute error, but also its deviation and the mean relative error for both
approximations can be seen in Table 3.7.
The results of the RBF approximation for Serpent Mound and its original are
shown in Figure 3.21d-3.21f. In Figure 3.23 the magnitude of error at each point
of original point cloud is visualized. It can be seen that the approximation using

(a) Gauss, α = 0.05 (b) Wendland’s φ3,1, α = 0.01

Figure 3.23: Approximation of the Serpent Mound with 10, 000 radial basis
functions false-colored by magnitude of error.

48

Table 3.7: The RBF approximation error for testing datasets and different radial
basis functions. Note that one feet [ft] corresponds to 0.3048 meter [m].

Error
Serpent Mound St. Helens
Gauss φ3,1 Gauss φ3,1

mean absolute error [ft] 0.4477 0.2289 44.4956 12.1834

deviation of error [ft] 1.4670 0.1943 680.3659 169.2800

mean relative error [%] 0.0024 0.0012 0.0087 0.0023

local Wendland’s φ3,1 basis function (Figure 3.21f) returns again better result
than approximation using the global Gaussian RBF (Figure 3.21e) in terms of
the error.
The mutual comparison of both datasets in terms of the mean relative error
(Table 3.7) indicates that the mean relative error for Serpent Mound is smaller
than for Mount Saint Helens. It is caused by the presence of vegetation, namely a
forest, in LiDAR data of the Mount Saint Helens. This vegetation operates in our
RBF approximation as noise, therefore, the resulting mean relative error is higher.
The implementation of the RBF approximation has been performed in Matlab
and tested on PC with the following configuration:

• CPU: Intel® Core™ i7-4770 (4× 3.40GHz + hyper-threading),
• memory: 32 GB RAM,
• operating system Microsoft Windows 7 64bits.

For the approximation of the Serpent Mound with 10, 000 local Wendland’s φ3,1

basis function with shape parameter α = 0.01; the running times for different
sizes of blocks were measured. These times were converted relative to the time
for 100× 100 blocks and are presented in Figure 3.24. We can see that the time
performance is large for the approximation matrix which is partitioned into small

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

T
im

e
re

la
ti

ve
 to

 1
00

x1
00

bl
oc

ks

Block size

0

5

10

15

0 25 50 75 100 125 150 175 200

T
im

e
re

la
ti

ve
 to

10
0x

10
0

bl
oc

ks

Block size

Figure 3.24: Time performance for approximation of the Serpent Mound depend-
ing on the block size. The times are presented relative to the time for 100× 100
blocks.

49

blocks (i.e. smaller than 25× 25 blocks). This is caused by overhead costs. On
the other hand, the running time begins to grow above the permissible limit due
to memory swapping for the approximation matrix which is partitioned into large
blocks (i.e. larger than 125× 125 blocks).

Comparison of CS-RBFs

The proposed RBF approximation for large data, see Section 3.4, has been tested
on the dataset which was obtained from LiDAR data of the Serpent Mound in
Adams Country, Ohio1 and each point is associated with its elevation. The set of
reference points is a subset of the given dataset, for which the RBF approximation
is determined. Moreover, reference points are uniformly distributed within a given
area. Table 3.5 gives an overview of the datasets.
All CS-RBFs from the catalog of RBFs in [Fas07] (see D.2.7) have been used
for experiments. Depending on the quality, the obtained results are divided into
three groups. The results are presented for an representative of each group, i.e.
Wendland’s φ3,0, Wendland’s φ3,1 and Wendland’s φ3,3, see Table 3.2.
The shape parameters α for the used CS-RBFs were determined experimentally
with regard to the quality of approximation and they are presented in Table 3.8.

Table 3.8: Experimentally determined shape parameters α for the Serpent Mound
and the used CS-RBFs

CS-RBF shape parameter

Wendland’s φ3,0 α = 0.0071

Wendland’s φ3,1 α = 0.0100

Wendland’s φ3,3 α = 0.0050

The RBF approximation for the Serpent Mound was solved block-wise where the
size of blocks is 100. The results of RBF approximation are shown in Figure 3.25.
It illustrates the magnitude of the error at each point of the original points cloud.
It can be seen that the RBF approximation with Wendland’s φ3,1 basis function
returns the best result in terms of the error for the Serpent Mound dataset.
The RBF approximation with Wendland’s φ3,3 basis function returns the worst
results. However, the overall variation of the error is smaller for this configuration.
Moreover, we can see that the highest errors occur on the boundary of the terrain
for Wendland’s φ3,1 and Wendland’s φ3,0. Three error measures of the elevation
for all used CS-RBFs are gathered in Table 3.9. Moreover, the signed errors
for the Serpent Mound dataset and Wendland’s φ3,1 basis function are shown in

1http://www.liblas.org/samples/

50

http://www.liblas.org/samples/

Figure 3.25: Serpent Mound dataset: Wendland’s RBF φ3,0, α = 0.0071 (left);
Wendland’s RBF φ3,1, α = 0.0100 (center) and Wendland’s RBF φ3,3, α = 0.0050
(right)

Figure 3.26. We can see that the signs are different at various locations. The
similar results are obtained for the rest of experiments.

Figure 3.26: The signed errors for the Serpent Mound dataset and Wendland’s
RBF φ3,1 with α = 0.01: the color red is used to denote the positive error, and
the color cyan is used to denote the negative error.

51

Table 3.9: The RBF approximation error for the Serpent Mound dataset and
different radial basis functions. Note that one feet [ft] corresponds to 0.3048
meter [m].

Error
Wendland’s

φ3,0 φ3,1 φ3,3

mean absolute error [ft] 0.3043 0.2289 0.7480

deviation of error [ft] 0.3990 0.1943 0.5093

mean relative error [%] 0.0016 0.0012 0.0040

3.5.4 Summary

The new RBF approximation with a polynomial reproduction (Section 3.3.4) was
proposed. This approach eliminates inconsistency which occurs in the original RBF
approximation with a polynomial reproduction (Section 3.3.3). This inconsistency
is caused by adding additional conditions to the polynomial part. The experiments
made prove that the proposed approach gives significantly better results than the
original method in terms of accuracy.
Further, the comparisons of different methods of RBF approximation with respect
to various criteria were presented. The RBF approximation which was introduced
in Section 3.3.1 gives the best results due to the smallest error. The proposed
RBF approximation with linear reproduction can be influenced by the placement
of the given dataset in space. Therefore, it is appropriate that the translation of
the estimated center of gravity to the origin of the coordinate system is made
as the first step. The worst results according to the error were obtained using
the RBF approximation using Lagrange multipliers. Moreover, this method of
approximation has unpredictable behavior, the matrix for RBF approximation
using Lagrange multipliers is mostly ill-conditioned and its size is high, i.e. it is
of the (M +N)× (M +N) size.
Moreover, the RBF approximation introduced in Section 3.3.1 was used for the
approximation of synthetic and real datasets. The RBF approximation for large
data which was introduced in Section 3.4 was used for large datasets. The main
idea of this modification is that the symmetric matrix is partitioned and solved
block-wise enabling the computation on systems with limited main memory. The
experiments made prove that the proposed approach is able to determine the RBF
approximation for large dataset. Moreover we can see, from the experimental
results, that the use of a local RBFs is better than global RBFs if data are
sufficiently sampled. Futher, it is obvious that the approximation using the
global Gaussian RBFs has problems with the preservation of sharp edges. The
experiments made also prove that the RBF methods have problems with the

52

accuracy of calculation on the boundary of an object, which is a well known
property, and the magnitude of the RBF approximation error is influenced by the
presence of a noise.
Finally, the comparison of results stemming from CS-RBFs approximation was
performed. This comparison was done for synthetic and real datasets. The
experiments showed that it is possible to divide the CS-RBFs from the catalog of
RBFs (D.2.7 in [Fas07]) into three groups depending on the quality of the results.
Moreover, we have found, from the results of the experiments, that CS-RBFs
which return the best results in terms of the error for the synthetic datasets; may
not be the best choice for real datasets.

53

Chapter 4

Reconstruction of Geometric
Datasets

So far we dealt with explicit surface representation using RBF methods, i.e. we
solved f(xi) = hi. Now, we will deal with implicit representation of surface using
RBF methods, i.e. we will solve F (xi) = 0, which is more difficult.

4.1 Carr’s Method

The algorithm proposed by Carr et al in [CBC+01] deals with the reconstruction
and the representation of large point clouds with RBF. An surface of point cloud
is defined implicitly as the zero set of an RBF fitted to the given data.
The algorithm involves three steps. These steps are:

• Constructing a signed-distance function.
• Fitting an RBF to the resulting distance function.
• Iso-surfacing the fitted RBF using e.g. marching tetrahedra algorithm.

4.1.1 Fitting an Implicit Function to a Surface

Now, we define a problem to be solved more precisely. We have given n distinct
points {(xi, yi, zi)}ni=1 on a surface S ∈ R3, then find a surface S ′ that is a
reasonable approximation to S. As the definition of the solved problem is clear;
it implies that we wish to find a function f which implicitly defines a surface S ′,
and the following equation is satisfied for all the given points:

f(xi, yi, zi) = 0 i = 1, . . . , n. (4.1)

54

Moreover, off-surface points have to be appended to the input data, and non-zero
values have to be given to avoid the trivial solution that f is zero everywhere.
Thus, we get a more useful interpolation problem: Find f such that

f(xi, yi, zi) = 0 i = 1, . . . , n (on-surface points),
f(xi, yi, zi) = hi 6= 0 i = n+ 1, . . . , Nc (off-surface points).

(4.2)

Then, the problem of generating the off-surface points {(xi, yi, zi)}Nci=n+1 and the
corresponding values hi arises. An obvious choice for function f is a signed-
distance function, i.e. the values hi are chosen as the distance to the nearest
on-surface point. The positive value of this distance indicates a point outside the
object while the negative value indicates a point inside object. The off-surface
points are generated by projecting along surface normals, see Figure 4.1.

Figure 4.1: A signed-distance function is constructed from the surface data by
specifying off-surface points along surface normals. These points may be specified
on either or both sides of the surface, or not at all [CBC+01].

In Figure 4.2(a) the example of point cloud (green) for hand from a laser scan
can be seen. Moreover, this point cloud is supplemented with off-surface points
where points outside the object are represented by hot colors and inner points are
colored by cold colors.

Figure 4.2: Reconstruction of a hand from a cloud of points with and without
validation of normal lengths [CBC+01].

55

Estimating surface normals and determining the appropriate projection distance
are two problems which have to be solved. If the partial mesh is known then
normals are implied by the mesh connectivity at each vertex. However, in the
case of unorganized dataset, it is required to estimate normals from a local
neighborhood of points.
When the off-surface points are projecting along the normals, it has to be ensured
that they do not intersect other parts of the surface. In the opposite case, i.e.
when the inappropriate projecting distances are chosen, the off-surface points
with the incorrect sign and magnitude of associated values di are generated and
the resulting surface is distorted, see Figure 4.2(c). Therefore, the validation of
off-surface distances and dynamic projection is performed to ensure that off-surface
points produce a distance field consistent with the surface data, see Figure 4.2(a)
and (b).
Now, when we have given a set of zero-valued surface points and non-zero off-
surface points, our problem is possible to be solved as a scattered data interpolation
problem which can be solved by the RBF interpolation with polynomial reproduc-
tion, see Section 3.2.2.

4.1.2 RBF Center Reduction

The method mentioned above uses all the input data points as centers of the RBF.
However, it is possible to obtain the resulting surface with the desired accuracy
using significantly fewer centers, see Figure 4.3. Therefore, a greedy algorithm can
be used to iteratively fit an RBF to within the desired fitting accuracy. The steps
of this greedy algorithm are introduced in Algorithm 1. Note that if a different
accuracy δi is specified at each point then the condition may be replaced in step
3 by |εi| < δi. An example of using this algorithm can be seen in Figure 4.4.

Figure 4.3: Illustration of center reduction [CBC+01].

56

Algorithm 1 Simple greedy algorithm for iteratively fit an RBF
1: Choose a subset from the interpolation nodes xi and fit an RBF only to these.
2: Evaluate the residual, i.e. εi = hi − f(xi), at all nodes.
3: if max{|εi|} < fitting accuracy then
4: Stop
5: else
6: Append new centers where εi is large.
7: Re-fit RBF and goto 2.

Figure 4.4: A greedy algorithm iteratively fits an RBF to a point cloud resulting
in fewer centers in the final function. In this case the 544, 000 points is represented
by 80, 000 centers to a relative accuracy of 5× 10−4 in the final frame [CBC+01].

4.1.3 Reconstruction of Noisy Data

The real data is often noisy and irregular due to the limited range resolution
and mis-registration between scans taken at different scanner positions. The
linear system (3.12) is too strict for those data. Therefore, we use the idea
of regularization (Section 3.2.3), and mentioned linear system of equations is
modified to: (

A− 8Ncπ%I P

P T 0

)(
c

a

)
=
(
h

0

)
, (4.3)

where the regularization parameter % ≥ 0 can be through of as the stiffness of the
RBF f(x). Note that for parameter % it is possible to the choose global value or
to specify it for each data point or group of points.

57

4.2 Multilevel Compactly Supported RBF In-
terpolation

The algorithm proposed by Othake et al in [OBS05], and [OBS03] combines
advantages provided by locally and globally supported RBFs and uses CS-RBFs
in a hierarchical fashion.
Let us consider that we have given a set of N points P = {pi}Ni=1 scattered along
a surface. Moreover, we assume that each point pi in this set is associated with
its inner unit normal ni defining an orientation. We want to calculate a 3D scalar
field f(x) such that its zero level-set f(x) = 0 interpolates P .
At first, we build a multiscale hierarchy of point sets {P1,P2, . . . ,PL = P}. To
construct this hierarchy, we fit P into a parallelepiped and then we start an octree-
based subdivision of this parallelepiped. Point set P is clustered with respect to
the cells of created octree. After that each cell is represented by centroid of points
contained in this cell. A unit normal; associated with the centroid, is obtained
by averaging the normals associated with the points of P inside the cell and its
normalizing. Set P1 corresponds to the subdivision of the initial parallelepiped
into eight equal octants.
After constructing the multiscale hierarchy of point sets, it is possible to proceed
to multilevel interpolation via offsetting in the coarse-to-fine way, i.e. the inter-
polation function of a point set Pm is used for interpolation of a point set Pm+1.
The main steps of this approach are demonstrated in Figure 4.5.
First, we define an initial base function:

f 0(x) = −1 (4.4)

and then recursively define the set of interpolating functions:

fk(x) = fk−1(x) + ok(x) k = 1, . . . , L, (4.5)

where fk(x) = 0 interpolates the set Pk. The offsetting function ok(x) is deter-
mined as

ok(x) =
∑
pki ∈Pk

[
gki (x) + cki

]
φσk(‖x− pki ‖), (4.6)

where φσk(r) = φ(r/σk), φ(r) = (1− r)4
+(4r + 1) is Wendland’s CS-RBFs, σk is

its support size and gki (x) and cki are unknown functions and coefficients to be
determined.
The function gki (x) is a local shape function which can be estimated on the basis
of number of points in the appropriate cell and the distribution of normals of
those points [OBA+03]. In this section, the function gki (x) is defined such that
gki (x) = 0 is the local quadratic approximations of Pk in a small neighborhood of

58

Figure 4.5: Multilevel interpolation of a monk model overview. (Top row)
Multiscale hierarchy of points where the radii of the spheres at each level k are
proportional to σk. (Middle row) Interpolating implicit surfaces polygonized at
each level of the hierarchy. (Bottom row) cross-sections of the interpolating; the
bold black lines correspond to the zero level sets of the functions. [OBS05].

pki ∈ Pk. The zero level-set of introduced local approximation gki (x) corresponds
to the graph of w = h(u, v) where (u, v, w) is a local orthogonal coordinate system
with the origin at point pki such that the plane (u, v) is orthogonal to normal nki ,
and the direction of this normal coincides with the positive direction of w and
h(u, v) is a quadric

h(u, v) ≡ Au2 + 2Buv + Cv2, (4.7)
where the coefficients A, B, and C are determined via the least square fitting
applied to Pk. The geometric idea behind this interpolation approach is illustrated
in Figure 4.6.

59

Figure 4.6: Geometric idea behind our approach for scattered point data interpo-
lation [OBS05].

The shifting coefficients cki are determined by solving the following linear system
of equations:

fk−1(pki) + ok(pki) = 0. (4.8)

The support size σk is estimate from the density of the set P . This support size
is defined by:

σk+1 = σk

2 , σ1 = αD, (4.9)

where D corresponds to the length of diagonal of the bounding box of the set P
and parameter α is selected such that a ball with radius σ1 centered somewhere in
the octant always overlays the octant of the bounding box. Parameter α = 0.75
is typically used.
At last, the number of subdivision levels L has to be determined. The support
size σ0 is needed for these purposes; the same support size which was used for
single-level interpolation. This support size corresponds to three fourths of the
average diagonal of the leaf cells of octree. The introduced octree is constructed
by using subdivision of bounding box of set P , and the leaf cell contains no more
than eight points of set P. The following relation produced good results for
determination number of subdivision levels L:

L =
⌈
− log2

σ0

2σ1

⌉
(4.10)

4.3 3D Scattered Data Approximation with
Adaptive Partition of Unity and CS-RBFs

The method for the approximation of scattered data combines an adaptive partition
of unity approximation with least-square adaptive fitting; as proposed by Othake

60

et al in [OBS04] and [OBS06].
Let us consider that we have given a set of N points P = {pi}Ni=1 scattered along
a surface. Moreover, we assume that each point pi in this set is associated with its
inner unit normal N = {ni}Ni=1 defining an orientation of surface and is attributed
with a real number ωi ∈ [0, 1] indicating the confidence of pi. We want to construct
a function y = f(x) such that its zero level-set f(x) = 0 approximates P . Further,
we have given a set of approximation centers C = {ξi}Mi=1,M � N . The main
goal is the constructed function f(x) approximating P in the following form:∑

ξi∈C

[
gi(x) + ci

]
φσi(‖x− ξi‖), (4.11)

where φσ(r) = φ(r/σ), φ(r) = (1 − r)4
+(4r + 1) is Wendland’s CS-RBFs, σi

is support size and gi(x) and ci are unknown functions and coefficients to be
determined. For each approximation center ξi the function gi(x) is constructed
as a local quadratic approximation of set P in {‖x − ξi‖ < σi}, the region of
influence of ξi. Now, the coefficients {ci}Mi=1 from interpolation conditions

f(ξi) = 0, i = 1, . . . ,M (4.12)

are determined.
When the partition of unity (PU) approximation:∑

ξi∈C
gi(x)Φσi(‖x− ξi‖), (4.13)

where the PU functions are given by

Φσi(‖x− ξi‖) = φσi(‖x− ξi‖)∑
j φσj(‖x− ξj‖)

, (4.14)

which belong to the class of the normalized RBFs, is considered, the approximation
of set P attributed with normals N and confidences {ωi} is possible to be
performed using a PU approximation and normalized RBFs Φσi(‖x− ξi‖):∑

ξi∈C
gi(x)Φσi(‖x− ξi‖)︸ ︷︷ ︸

adaptive PU
(base approximation)

+
∑
ξi∈C

ciΦσi(‖x− ξi‖)︸ ︷︷ ︸
normalized RBF

(local details)

= 0. (4.15)

The explanation, how to choose approximation centers {ξi} and determine their
support sizes σi, and the construct local approximations gi(x) are described in
Section 2 in [OBS06]. Figure 4.7 presents several steps in the construction the
approximation centers {ξi} and their influence radii {σi} for the Stanford bunny
model. One of the possibilities, how to determine unknown RBF weights {ci}, is
then described in Section 3 in [OBS06].

61

Figure 4.7: Four intermediate stages of the approximation center selection proce-
dure. The number of approximation centers increases from left to right and is
equal to 100, 500, 1000, and 2000, respectively [OBS06].

4.4 Morse’s Method

Algebraic methods for creating implicit surfaces from scattered surface data are
described by Morse et al in [MYC+01]. The authors use the RBF interpolation;
see Section 3.2.1, or the RBF interpolation with polynomial reproduction; see
Section 3.2.2, in combination with CS-RBFs; see Table 3.2, in this article.
The introduced approach uses the advantages of CS-RBFs for reduction of compu-
tational and memory costs. The CS-RBFs have finite radius of support. Therefore,
the input interpolated set of points is sorting to k−d tree which speed up to
find all points within the radius of support. Moreover, the resulting matrix is
extremely sparse, see Figure 4.8, thus, the sparse-matrix representation is possible
to be used. The authors use the Hartwell-Boeing format which is very similar to
CSR format, see Section 2.1.4. It leads to reduction of memory costs.

Figure 4.8: Structure of the matrix produced by CS-RBFs. Zero-element is colored
by black, non-zero element is white [MYC+01].

62

4.5 Tobor’s Method

Tobor et al in [TRS04] combines the RBF methods and the partition of unity
(PU) method. The RBFs are used to solve a set of small local problems, and the
PU method combines these local solutions together in this approach.
Let us consider that we have given a set of N pairwise distinct points P =
{pi}Ni=1 ∈ Ω ⊂ Rd where d is dimension of space, and the set of values {hi}Ni=1.
We want to calculate a function f : Rd → R with f(pi) = hi where i = 1, . . . , N .
The reconstruction algorithm described above; contains two steps:

1. The space partitioning step which determines a set of “slightly” overlapping
domains {Ωi} with associated weighting functions {Wi} which are needed
for PU method.

2. The reconstruction step which computes the set of local functions {fi}.

Due to the optimal computational complexity quasi-uniform distribution of the
points in the domains {Ωi} has to be obtained. Therefore, the adaptive subdivision
of the domain Ωi is described in Algorithm 2. In this algorithm each subdomain
contains between Tmin and Tmax points.

Algorithm 2 Partition (P , Ωi)
Input: points P, domain Ωi

Output: set of domains {Ωj}
1: Compute number of points n of the set P
2: if n > Tmax then
3: Subdivide Ωi into overlapping Ω1

i , . . . ,Ω
m
i

4: Partition (P, Ω1
i)

5: . . .
6: Partition (P, Ωm

i)

7: else if n < Tmin then
8: while n /∈ [Tmin, Tmax] do
9: if n < Tmin then

10: Expand Ωi

11: else if n > Tmax then
12: Reduce Ωi

13: Add Ωi to {Ωj}
14: else
15: Add Ωi to {Ωj}

The example of a hierarchy of domains created by Algorithm 2 is shown in
Figure 4.9. The final set of domains {Ωi} contains all leaves of the tree. Moreover,
for each subdomain Ωi a set of points Pi = {p ∈ P|p ∈ Ωi} is constructed.

63

Figure 4.9: Space subdivision (Ωi and Ω4
i) and domain expanding (Ω3

i) in order
to adaptively balance the number of points per domain [TRS04].

The set of partition non-negative functions {wi} with limited support and with∑
wi = 1 in the entire domain Ω have to be determined for the final global solution

because the global solution is defined as a combination of the local functions
weighted by the partition functions. These partition functions are obtained by
normalization procedure of any other set of smooth functions {Wi}. It should be
noted that to guarantee the continuity of the global interpolation function, the
function Wi has to be continuous at the boundary of the region Ωi. The examples
of such functions are presented in Section 3.3 in [TRS04].
The second step of reconstruction algorithm is simple. An interpolation function
fi is computed for each domain in the set of domains {Ωi} using the RBF
interpolation with a polynomial reproduction (Section 3.2.2) for the set of points
Pi.
It should be noted that parameter Tmax controls time and stability and parameter
Tmin provides a reconstruction without visible artifacts.

4.6 RBF Interpolation on GPU

Cuomo et al in [CGGS13] describes a parallel implicit method based on RBF
for the surface reconstruction. This method uses the idea of Carr’s method, see
Section 4.1, specifically, the set of off-surface points is generated in the same
manner. This is shown in Figure 4.10 where black points are original input dataset
X = {pi}Ni=1, blue points are set of “outside” off-surface points X+

δ = {pi}2N
i=N+1

and green points are set of “inside” off-surface points X−δ = {pi}3N
i=2N+1.

64

Figure 4.10: Extended interpolation dataset. There is shown set X (black points),
set X+

δ (blue points) and set X−δ (green points) [CGGS13].

The surface reconstruction algorithm is possible to be briefly described by Algo-
rithm 3. The second step is most computational expensive because it leads to the
solution of a linear system of 3N equations where N is the size of initial dataset.
It means that the problem with memory can become with the growing size of the
dataset.

Algorithm 3 Surface reconstruction
Input: Point could X , surface normals {ni}, points of evaluation grid x = {xi}Mi=1

1: Compute extended dataset: Xext = X ∪ X+
δ ∪ X−δ by using {ni}

2: Find the interpolant f(x) (3.5) on Xext
3: Evaluate f(x) (3.5) on x
4: Render the surface

Therefore, the parallelization, on distributed memory architectures, becomes
necessary as the size of dataset grows. The authors assume the idea of Domain
Decomposition Method (DDM), i.e. the domain Ω containing the input dataset is
divided into overlapping subdomains Ωi, and then they try to solve the original
problem as the series of subproblems. Moreover, the corresponding empty inter-
section portions of subdomains Ωi are denoted Ω̃i. The example of the mentioned
subdivision is shown in Figure 4.11. The solution of the linear system (3.7) on
the whole domain is possible to be obtained by solving the linear sub-system
AicΩi = hΩi in the individual overlapping subdomains where Ai, cΩi and hΩi

are the elements corresponding to domain Ω. The additive Schwarz method or
restricted additive Schwarz method can be used for determination of this solution
by using parallel calculations.
The complexity of calculation of mentioned linear system depends on the choice
of RBFs. If basis functions with insignificant global effect are used, e.g. Gaussian
function when the matrix A has the following elements:

Aij = 1√
2πσ

e−
‖pi−pj‖

2

2σ2 , (4.16)

65

Figure 4.11: Illustration of the Domain Decomposition Method [CGGS13].

then the elements of matrix A corresponding to the interaction of distant points
can be neglected.
The authors state that their implementation has been realized using the Portable
Extensible Toolkit for Scientific Computation which has been added the GPU
support. Moreover, the sparse matrix formats, see Section 2.1, are supported by
this toolkit. The pseudo-code for construction of interpolation matrix is presented
in Algorithm 4.

Algorithm 4 Interpolation matrix construction
1: for each subdomain Ωi do
2: for each point pi in the subdomain Ωi do
3: for each point pj in the truncation area of Ωi do

4: Set Aij = 1√
2πσ

e−
‖pi−pj‖

2

2σ2

4.7 TVL1 Shape Approximation

Algorithm for 3D shape reconstruction which combines RBF approximation
and non-smooth L1 Total Variation regularization (TVL1) for implicit 3D shape
modelling is proposed by Funk et al in [FDB15]. This algorithm is based on
original RBF approximation, see Section 3.3.1.
Let us consider that we have given a set of N points P = {pi}Ni=1 and we want to
find a function f(x) such that returns zero on every i−th sample pi. Unfortunately,
the points lying on zero level of surface do not provide satisfactory information
for the determination of search function. Therefore, the surface normals ni at

66

every sample are used as constraints for gradient ∇f(x) with respect to x. Thus,
the goal is to find the function f(x) such that satisfies:

f(pi) = 0 i = 1, . . . , N
∇f(pi) = ni i = 1, . . . , N

(4.17)

Using all the information and knowledge that RBF approximation is minimization
problem, the convex cost function is defined:

min
c

N∑
i=1

(
‖f(pi)‖2

2 + ‖ni −∇f(pi)‖2
2

)
, (4.18)

where c is vector of unknown weights. Note that only the gradient of basis function
φ(r) = φ(‖x− pj‖2) = ϕ(x,pj), which is precomputed analytically, is needed for
obtaining the gradient ∇f . The equation (4.18) can be written in the following
matrix form:

min
c

(
‖Ac‖2

2 + ‖n−A∇c‖2
2

)
, (4.19)

where Aij = ϕ(pi,pj) ∈ R is value of the RBF, A∇ij = ∇ϕ(pi,pj) ∈ R3 represents
the derivatives of ϕ with respect to xi and vector n =

[
nT1 , . . . ,n

T
N

]T
is vector

of normals. Thus, the matrices are of sizes A ∈ RN×M and A∇ ∈ R3N×M . It is
obvious that RBFs with local support return zeros for distant points pi, pj, i.e.
sparse matrices A and A∇ are obtained. The example of such sparse matrices is
shown in Figure 4.12 where black dots visualize the non-zero entries of matrix.
Further, the extension of the cost function with total variation (TV) regularization
term is performed which supports the piecewise smoothness. It leads to compute
the second derivatives with respect to the radius r of the RBF φ(r). The term of

Figure 4.12: Example of sparse matrices A and A∇ when CS-RBF is applied
[FDB15].

67

total variation regularization is expressed by:

TV (x) =
M∑
i=1

∂2
rrφ(r)ci. (4.20)

Adding TV regularization term to (4.19) the new definition of cost function is
obtained:

min
c

(
‖Ac‖2

2 + ‖n−A∇c‖2
2 + λ‖Dc‖1

)
, (4.21)

where Dij = ∂2
rrϕ(xi,xj), ‖.‖2

2 is square of Euclidean norm, ‖.‖1 is L1 norm and
λ is the weight of the regularization term. Note that the weights ci corresponding
to the largest eigenvalue of D are reduced the most while coefficients lying in the
kernel of D are not affected at all. Figure 4.13 shows an example when the input
data have been perturbed by noise, see Figure 4.13 a, and the shape is reconstructed
via simple least squares, see Figure 4.13 b, and TVL1, see Figure 4.13 c.

Figure 4.13: a) Noisy 3D samples of the step function. b) Direct least squares. c)
TVL1 regularized approximation [FDB15].

The numerical technique to efficiently solve the TVL1 approximation is presented
in Section 3.3 in [FDB15].

68

Chapter 5

Proposal of Future Work

In this work, the state of the art for problem of the interpolation and the approxi-
mation of large geometric datasets was presented. The explanation is aimed at
the description of the meshless interpolation and approximation methods and
data structures useful for representation large scattered datasets. Moreover, some
improvements, as the new RBF approximation with a polynomial reproduction
or the technique for calculation of large datasets, were shown, and it has been
identified some problems.
We performed comparisons of different methods of the RBF approximation (Sec-
tion 3.3) with respect to various criteria, different RBFs and different datasets.
Conclusions from these comparisons are summarized in Section 3.5.4.
In this work we showed that the RBF approximation methods have generally
problem with the accuracy of calculation on the boundary of an object, and the
preservation of sharp edges is also problematic for some types of RBFs.
In the future work, we want to explore possibilities for improvement of RBF
methods in respects of problems mentioned above. Further, the error of the RBF
methods is influenced by the presence of a noise in the input data, thus, we want
to perform research in terms of lower sensitivity to noise. Also improving the
computational performance without loss of accuracy and improving the method
for large datasets will be further explored. We would also like to implement and
test some of the methods described in Chapter 4 to compare their performance
and accuracy with our methods.
The another task which offers to deal is research in the area of the determination
of the optimal shape parameter which influences radius of support of used RBF.
This choice is currently performed on the basis of some experimental results.
The question remains whether the relation for shape parameter is possible to
be described empirically and ideally be derived adaptively depending on the
characteristics (e.g. density) of data in the neighborhood of center of associated

69

RBF.
To summarize, the main goal of our future work is the development of RBF
methods for the reconstruction of large geometric datasets with the following
features:

• the better accuracy of calculation on the boundary of an object,

• the preservation of sharp edges,

• the lower sensitivity to noise,

• the better computational performance without loss of accuracy,

• the empirically and adaptively derived relation for shape parameter.

70

References

[ALP14] K. Anjyo, J. P. Lewis, and F. H. Pighin, “Scattered data interpolation
for computer graphics,” in Special Interest Group on Computer Graph-

ics and Interactive Techniques Conference, SIGGRAPH ’14, Vancouver,

Canada, August 10-14, 2014, Courses, pp. 27:1–27:69, 2014.

[BG08] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” tech. rep., Nvidia Technical Report NVR-2008-004, Nvidia
Corporation, 2008.

[BG09] N. Bell and M. Garland, “Implementing sparse matrix-vector multi-
plication on throughput-oriented processors,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and

Analysis, p. 18, ACM, 2009.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and representation
of 3d objects with radial basis functions,” in Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 2001, Los Angeles, California, USA, August 12-17, 2001,
pp. 67–76, 2001.

[CGGS13] S. Cuomo, A. Galletti, G. Giunta, and A. Starace, “Surface recon-
struction from scattered point via RBF interpolation on GPU,” in
Proceedings of the 2013 Federated Conference on Computer Science

and Information Systems, Kraków, Poland, September 8-11, 2013.,
pp. 433–440, 2013.

[Cyc92] J. M. Cychosz, “Graphics gems iii,” ch. Use of Residency Masks
and Object Space Partitioning to Eliminate Ray-object Intersection
Calculations, pp. 284–287, San Diego, CA, USA: Academic Press
Professional, Inc., 1992.

[Dar00] E. Darve, “The fast multipole method: Numerical implementation,”
Journal of Computational Physics, vol. 160, no. 1, pp. 195–240, 2000.

71

[DT16] F. Dell’Accio and F. D. Tommaso, “Complete hermite-birkhoff in-
terpolation on scattered data by combined shepard operators,” J.

Computational Applied Mathematics, vol. 300, pp. 192–206, 2016.

[DTS02] H. Q. Dinh, G. Turk, and G. G. Slabaugh, “Reconstructing surfaces by
volumetric regularization using radial basis functions,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 24, no. 10, pp. 1358–1371, 2002.

[Duc77] J. Duchon, “Splines minimizing rotation-invariant semi-norms in
sobolev spaces,” in Constructive theory of functions of several variables,
pp. 85–100, Springer, 1977.

[EPP00] T. Evgeniou, M. Pontil, and T. A. Poggio, “Regularization networks
and support vector machines,” Adv. Comput. Math., vol. 13, no. 1,
pp. 1–50, 2000.

[Fas07] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB,
vol. 6. River Edge, NJ, USA: World Scientific Publishing Co., Inc.,
2007.

[FDB15] E. Funk, L. S. Dooley, and A. Börner, “Tvl1 shape approximation
from scattered 3d data,” in VISAPP 2015 - Proceedings of the 10th

International Conference on Computer Vision Theory and Applications,

Volume 3, Berlin, Germany, 11-14 March, 2015., pp. 294–304, 2015.

[Fra79] R. Franke, “A critical comparison of some methods for interpolation
of scattered data,” Tech. Rep. NPS53-79-003, NAVAL POSTGRAD-
UATE SCHOOL MONTEREY CA, 1979.

[Fra82] R. Franke, “Scattered data interpolation: Tests of some methods,”
Mathematics of computation, vol. 38, no. 157, pp. 181–200, 1982.

[FZ07] G. E. Fasshauer and J. G. Zhang, “On choosing "optimal" shape
parameters for RBF approximation,” Numerical Algorithms, vol. 45,
no. 1-4, pp. 345–368, 2007.

[Har71] R. L. Hardy, “Multiquadratic Equations of Topography and Other
Irregular Surfaces,” Journal of Geophysical Research, vol. 76, pp. 1905–
1915, 1971.

[HSfY15] Y.-C. Hon, B. Sarler, and D. fang Yun, “Local radial basis function
collocation method for solving thermo-driven fluid-flow problems with
free surface,” Engineering Analysis with Boundary Elements, vol. 57,
pp. 2 – 8, 2015. {RBF} Collocation Methods.

72

[IdSPT14] D. Izquierdo, M. C. L. de Silanes, M. C. Parra, and J. J. Torrens,
“CS-RBF interpolation of surfaces with vertical faults from scattered
data,” Mathematics and Computers in Simulation, vol. 102, pp. 11–23,
2014.

[Isk04] A. Iske, Multiresolution Methods in Scattered Data Modelling, vol. 37
of Lecture Notes in Computational Science and Engineering. Springer,
2004.

[JCW+15] G. R. Joldes, H. A. Chowdhury, A. Wittek, B. Doyle, and K. Miller,
“Modified moving least squares with polynomial bases for scattered
data approximation,” Applied Mathematics and Computation, vol. 266,
pp. 893–902, 2015.

[KHS03] N. Kojekine, I. Hagiwara, and V. V. Savchenko, “Software tools using
CSRBFs for processing scattered data,” Computers & Graphics, vol. 27,
no. 2, pp. 311–319, 2003.

[Law13] O. S. Lawlor, “In-memory data compression for sparse matrices,” in
Proceedings of the 3rd Workshop on Irregular Applications: Architec-

tures and Algorithms, p. 6, ACM, 2013.

[LCC13] M. Li, W. Chen, and C. Chen, “The localized RBFs collocation
methods for solving high dimensional PDEs,” Engineering Analysis

with Boundary Elements, vol. 37, no. 10, pp. 1300 – 1304, 2013.

[LD08] A. Lagae and P. Dutré, “Compact, fast and robust grids for ray tracing,”
in Computer Graphics Forum, vol. 27, pp. 1235–1244, Wiley Online
Library, 2008.

[LK11] S. Laine and T. Karras, “Efficient sparse voxel octrees,” Visualization

and Computer Graphics, IEEE Transactions on, vol. 17, no. 8, pp. 1048–
1059, 2011.

[LZ06] E. Langetepe and G. Zachmann, Geometric data structures for com-

puter graphics. A K Peters, 2006.

[Mas03] T. Masuda, “Surface curvature estimation from the signed distance
field,” in 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Pro-

ceedings. Fourth International Conference on, pp. 361–368, IEEE,
2003.

[MS04] D. P. Mehta and S. Sahni, eds., Handbook of Data Structures and

Applications. Chapman and Hall/CRC, 2004.

73

[MYC+01] B. S. Morse, T. S. Yoo, D. T. Chen, P. Rheingans, and K. R. Subrama-
nian, “Interpolating implicit surfaces from scattered surface data using
compactly supported radial basis functions,” in 2001 International

Conference on Shape Modeling and Applications (SMI 2001), 7-11 May

2001, Genoa, Italy, pp. 89–98, 2001.

[OBA+03] Y. Ohtake, A. G. Belyaev, M. Alexa, G. Turk, and H. Seidel, “Multi-
level partition of unity implicits,” ACM Trans. Graph., vol. 22, no. 3,
pp. 463–470, 2003.

[OBS03] Y. Ohtake, A. G. Belyaev, and H. Seidel, “A multi-scale approach
to 3d scattered data interpolation with compactly supported basis
functions,” in 2003 International Conference on Shape Modeling and

Applications (SMI 2003), May 2003, Seoul, Korea, pp. 153–161, 2003.

[OBS04] Y. Ohtake, A. G. Belyaev, and H. Seidel, “3d scattered data approxi-
mation with adaptive compactly supported radial basis functions,” in
2004 International Conference on Shape Modeling and Applications

(SMI 2004), 7-9 June 2004, Genova, Italy, pp. 31–39, 2004.

[OBS05] Y. Ohtake, A. G. Belyaev, and H. Seidel, “3d scattered data interpo-
lation and approximation with multilevel compactly supported rbfs,”
Graphical Models, vol. 67, no. 3, pp. 150–165, 2005.

[OBS06] Y. Ohtake, A. G. Belyaev, and H. Seidel, “Sparse surface reconstruction
with adaptive partition of unity and radial basis functions,” Graphical

Models, vol. 68, no. 1, pp. 15–24, 2006.

[PRF14] D. W. Pepper, C. Rasmussen, and D. Fyda, “A meshless method using
global radial basis functions for creating 3-d wind fields from sparse
meteorological data,” Computer Assisted Methods in Engineering and

Science, vol. 21, no. 3-4, pp. 233–243, 2014.

[PS11a] R. Pan and V. Skala, “Continuous global optimization in surface
reconstruction from an oriented point cloud,” Computer-Aided Design,
vol. 43, no. 8, pp. 896–901, 2011.

[PS11b] R. Pan and V. Skala, “A two-level approach to implicit surface model-
ing with compactly supported radial basis functions,” Eng. Comput.

(Lond.), vol. 27, no. 3, pp. 299–307, 2011.

[Rip99] S. Rippa, “An algorithm for selecting a good value for the parameter
c in radial basis function interpolation,” Adv. Comput. Math., vol. 11,
no. 2-3, pp. 193–210, 1999.

74

[Sch79] I. Schagen, “Interpolation in two dimensions - a new technique,” IMA

Journal of Applied Mathematics, vol. 23, no. 1, pp. 53–59, 1979.

[Sch11] M. Scheuerer, “An alternative procedure for selecting a good value for
the parameter c in rbf-interpolation,” Adv. Comput. Math., vol. 34,
no. 1, pp. 105–126, 2011.

[SHK09] V. Skala, J. Hrádek, and M. Kuchař, “Hash function for triangular
mesh reconstruction,” pp. 233–238, 2009.

[Šim09] I. Šimecek, “Sparse matrix computations using the quadtree storage
format,” in Proceedings of 11th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing (SYNASC 2009),
pp. 168–173, 2009.

[Ska12] V. Skala, “An efficient space partitioning method using binary maps,”
in Proceedings of the 11th International Conference on Signal Processing

(SIP ’12), pp. 121–124, WSEAS, 2012.

[Ska13] V. Skala, “Fast Interpolation and Approximation of Scattered Multidi-
mensional and Dynamic Data Using Radial Basis Functions,” WSEAS

Transactions on Mathematics, vol. 12, no. 5, pp. 501–511, 2013.

[Ska15] V. Skala, “Meshless interpolations for computer graphics, visualization
and games,” in Eurographics 2015 - Tutorials, Zurich, Switzerland, May

4-8, 2015 (M. Zwicker and C. Soler, eds.), Eurographics Association,
2015.

[SMP+15] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sa-
dayappan, “Automatic selection of sparse matrix representation on
gpus,” in Proceedings of the 29th ACM on International Conference

on Supercomputing, pp. 99–108, ACM, 2015.

[SPN13] V. Skala, R. Pan, and O. Nedved, “Simple 3d surface reconstruction
using flatbed scanner and 3d print,” in SIGGRAPH Asia 2013, Hong

Kong, China, November 19-22, 2013, Poster Proceedings, p. 7, ACM,
2013.

[SPN14] V. Skala, R. Pan, and O. Nedved, “Making 3d replicas using a flatbed
scanner and a 3d printer,” in Computational Science and Its Appli-

cations - ICCSA 2014 - 14th International Conference, Guimarães,

Portugal, June 30 - July 3, 2014, Proceedings, Part VI, vol. 8584 of
Lecture Notes in Computer Science, pp. 76–86, Springer, 2014.

[TGB14] D. F. Trevisan, J. P. Gois, and H. C. Batagelo, “A low-cost-memory
CUDA implementation of the conjugate gradient method applied

75

to globally supported radial basis functions implicits,” J. Comput.

Science, vol. 5, no. 5, pp. 701–708, 2014.

[TO02] G. Turk and J. F. O’Brien, “Modelling with implicit surfaces that
interpolate,” ACM Trans. Graph., vol. 21, no. 4, pp. 855–873, 2002.

[TRS04] I. Tobor, P. Reuter, and C. Schlick, “Efficient reconstruction of large
scattered geometric datasets using the partition of unity and radial
basis functions,” in The 12-th International Conference in Central Eu-

rope on Computer Graphics, Visualization and Computer Vision’2004,

WSCG 2004, University of West Bohemia, Campus Bory, Plzen-Bory,

Czech Republic, February 2-6, 2004, pp. 467–474, 2004.

[US05] K. Uhlir and V. Skala, “Reconstruction of damaged images using
radial basis functions,” Proceedings of EUSIPCO 2005, p. 160, 2005.

[Wen95] H. Wendland, “Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree,” Adv. Comput. Math.,
vol. 4, no. 1, pp. 389–396, 1995.

[Wen06] H. Wendland, “Computational aspects of radial basis function approxi-
mation,” Studies in Computational Mathematics, vol. 12, pp. 231–256,
2006.

[ZVS09] J. Zapletal, P. Vaněček, and V. Skala, “RBF-based image restora-
tion utilising auxiliary points,” in Proceedings of the 2009 Computer

Graphics International Conference, pp. 39–43, ACM, 2009.

76

Publications

[MS16a] Z. Majdisova and V. Skala, “A New Radial Basis Function Approxima-
tion with Reproduction,” in Proceedings of the International Conferences

on Interfaces and Human Computer Interaction 2016; Game and En-

tertainment Technologies 2016; and Computer Graphics, Visualization,

Computer Vision and Image Processing 2016, pp. 215–222, IADIS Press,
July 2016.

[MS16b] Z. Majdisova and V. Skala, “A Radial Basis Function Approximation for
Large Datasets,” in Proceedings of SIGRAD 2016, pp. 9–14, Linköping
University Electronic Press, May 2016.

[SM15] V. Skala and Z. Majdisova, “Fast Algorithm for Finding Maximum
Distance with Space Subdivision in E2,” in Image and Graphics (Y.-J.
Zhang, ed.), vol. 9218 of Lecture Notes in Computer Science, pp. 261–274,
Springer International Publishing, 2015.

[SMS16] V. Skala, Z. Majdisova, and M. Smolik, “Space Subdivision to Speed-up
Convex Hull Construction in E3,” Advances in Engineering Software,
vol. 91, pp. 12–22, 2016.

Submitted Publications

[Maj16] Z. Majdisova, “A Comparative Study of Local RBFs for Big Data Ap-
proximation,” 2016. [In preparation].

[MS] Z. Majdisova and V. Skala, “Radial Basis Function Approximations: Com-
parison and Applications,” Applied Mathematical Modelling. [Submitted
05-03-2016].

77

Appendix A

Project Assignments, Other
Activities

A.1 Conferences and Talks

• A New Radial Basis Function Approximation with Reproduction, 10th
International Conference on Computer Graphics, Visualization, Computer
Vision and Image Processing (CGVCVIP), Funchal, Madeira, Portugal, July,
2016

• A Radial Basis Function Approximation for Large Datasets, SIGRAD 2016
(the Swedish Chapter of Eurographics) conference, Visby, Sweden, May 24,
2016

• Fast Algorithm for Finding Maximum Distance with Space Subdivision in
E2, 8th International Conference on Image and Graphics, Tianjin, China,
August 15, 2015

• Data Structures (in Czech), University of West Bohemia, Plzeň, Czech
Republic, May, 19, 2015

• Convex Hull and Space Subdivision in E3 (in Czech), University of West
Bohemia, Plzeň, Czech Republic, January, 30, 2015

A.2 Abroad

• CGVCVIP 2016, Funchal, Madeira, Portugal, July 2-4, 2016

• SIGRAD 2016, Visby, Sweden, May 23-24, 2016

78

• CERC 2015, Zagreb, Croatia, November 13-15, 2015

• ICIG 2015, Tianjin, China, August 13-16, 2015

• Eurographics 2015, Zürich, Switzerland, May 4-8, 2015

A.3 Participation on Scientific Projects

• Advanced Computing and Information Systems. Project code SGS-2016-013.

• Development of Algorithms for Computer Graphics and CAD/CAM Systems.
Funded by MSMT CR, project code LH12181.

• Advanced Computing and Information Systems. Project code SGS-2013-
029.

A.4 Teaching Activities

2014/2015:

• Programming Strategies (KIV/PRO) - tutor

• Introduction to Computer Graphics (KIV/UPG) - tutor

2015/2016:

• Programming Strategies (KIV/PRO) - tutor

• Introduction to Computer Graphics (KIV/UPG) - tutor

A.5 Other Activities

• Chairing session at WSCG 2016

• Preparation of competitive problems for programming contest PilsProg 2016

• Preparation of competitive problems for programming contest PilsProg 2015

• Chairing session at WSCG 2012

79

	Used Notation
	Introduction
	Organization

	Data Structures for Large Scattered Datasets
	Sparse Matrix Format
	Diagonal Format
	ELLPACK Format
	Coordinate Format
	Compressed Sparse Row Format
	Hybrid Format
	Quadtree Data Format

	Space Subdivision
	Residency Mask (RM)
	Binary Mask (BM)

	Summary

	Meshless Interpolation and Approximation
	Radial Basis Function (RBF)
	RBF Interpolation Methods
	RBF Interpolation
	RBF Interpolation with Polynomial Reproduction
	Regularized RBF Interpolation
	Summary

	RBF Approximation Methods
	RBF Approximation
	RBF Approximation using Lagrange Multipliers
	Original RBF Approximation with Polynomial Reproduction
	Proposed RBF Approximation with Polynomial Reproduction

	RBF Approximation for Large Data
	Experimental Results of RBF Approximation
	Types of Reference Points Distribution
	Synthetic Datasets
	Real Datasets
	Summary

	Reconstruction of Geometric Datasets
	Carr's Method
	Fitting an Implicit Function to a Surface
	RBF Center Reduction
	Reconstruction of Noisy Data

	Multilevel Compactly Supported RBF Interpolation
	3D Scattered Data Approximation with Adaptive Partition of Unity and CS-RBFs
	Morse's Method
	Tobor's Method
	RBF Interpolation on GPU
	TVL1 Shape Approximation

	Proposal of Future Work
	References
	Publications
	Submitted Publications

	Project Assignments, Other Activities
	Conferences and Talks
	Abroad
	Participation on Scientific Projects
	Teaching Activities
	Other Activities

