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Abstract 

This work focuses on vector field visualization and approximation or 

interpolation. We summarize the knowledge about vector fields and its critical points as 

they are the most important property of all vector fields. Next, we present the interpolation 

and approximation techniques together with some of our published work about vector 

fields and radial basis functions. Vector fields can be results of numerical simulations, so 

we present algorithms for solving PDE with meshless techniques as well. Next, we 

summarize some of the visualization techniques for vector field visualization.  

In the last chapter we discuss the possible directions of future research in the fields 

of vector field visualization and interpolation or approximation. 
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1 Introduction 

The concept of flow plays an important role in many fields of science. Classical 

application fields are, for example, the automotive and aerospace industry, where the 

investigation of the air flow around vehicles is an important task. However, the same 

concepts are used in the simulation and analysis of water flow in turbines of power plants, 

of blood flow in vessels, the propagation of smoke in buildings, and weather simulations, 

to mention just a few. The visualization of data gained from the simulation/measurement 

of such processes is relevant for the domain users as visualization has the potential to ease 

the understanding of such complex flow phenomena. In this context, topological flow 

visualization methods have been developed, with the aim to give insight into the overall 

behaviour of the flow. A characteristic of this class of methods is the segmentation of the 

flow domain into regions of substantially different flow behaviour, providing a topology 

of the flow domain. 

The theory of dynamical systems goes back to the 19th century work of Henri 

Poincare. An introduction can be found, for example in Katokand and Hasselblatt 

[Kat97]. In our context, the case of deterministic, continuous and autonomous dynamical 

systems is most interesting, because such systems can be used to formulate velocity fields 

of a steady fluid flow. Many patterns in a flow can be described and analysed by concepts 

from dynamical systems theory, such as critical points, separatrices and periodic orbits. 

Perry and Chong [Per87] give a comprehensive overview of such 2𝐷 and 3𝐷 flow 

patterns. Helman and Hesselink introduced these methods to the scientific visualization 

community, and used them under the notion of vector field topology for the visualization 

of computed and measured velocity fields, first in 2𝐷 [Hel89] and later in 3𝐷 [Hel91]. 

Vector field topology was further popularized both by Asimov’s excellent tutorial [Asi93] 

and by Globus et al.’s TOPO module [Glo91] for NASA’s FAST visualization software. 

Mesh methods are standard tools for the simulation of flow problems, they enable 

efficient and reliable approximations of the differential equations in fluid flow. However, 

in certain applications, for example in the presence of large geometric deformations of 

the boundary or rotating and moving obstacles, i.e. situations which may frequently occur 

in the context of fluid with structure interaction problems, the maintenance of a 

conforming mesh may be almost impossible. Different techniques have been developed 

to deal with these problems in the mesh-based context; the fictitious domain and fictitious 

boundary methods, techniques employing overlapping grids, sliding mesh, level-set 

methods, or standard arbitrary Lagrangian-Eulerian formulations with frequent 

remeshing. 

A different way to handle complex flow problems is to employ a comparably new 

and innovative class of methods, which enables the approximation of partial differential 

equations based on a set of nodes, without the need for an additional mesh. In recent years 

meshless/meshfree methods have gained considerable attention in engineering and 

applied mathematics. The variety of problems that are now being addressed by these 
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techniques continues to expand and the quality of the obtained results demonstrates the 

effectiveness of many of the methods currently available. These meshfree methods are 

generally able to solve problems where meshes bring up difficulties. However, they are 

comparably time-consuming, which limits their usefulness in the simulation of 

challenging real-life problems. 



2     Vector fields 

 
  

8 

2 Vector fields 

The term flow denotes an abstract concept adopted in many application fields. 

Fluid dynamics, for instance, is concerned with the study of fluid flows, i.e. the motion 

of fluids: typical examples include the motion of water in a pump or a turbine, the stream 

of air around a car or an airplane, blood in a vessel, oil or gas in a pipe, and many other. 

Flow visualization usually deals with data generated via measurements, simulations or 

modelling, and the results are commonly expressed as vector fields. 

Vector fields on surfaces are important objects, which appear frequently in 

scientific simulation in CFD (Computational Fluid Dynamics) or modelling by FEM 

(Finite Element Method). To be visualized, such vector fields are usually linearly 

interpolated for the sake of simplicity and performance considerations. Namely, the 

vector field is sampled at each vertex of the underlying piecewise linear surface and 

interpolated linearly, similarly to what is done for the geometry. 

Vector fields can be described for general vectors in 𝐸𝑛, but for our purposes it is 

sufficient to consider 𝐸2 or 𝐸3. A vector field in 𝐸3 is a map that for each point  

𝒙 = [𝑥, 𝑦, 𝑧]𝑇 in a domain assigns a vector 

 𝒗(𝒙(𝑡), 𝑡) = [𝑣1(𝒙(𝑡), 𝑡), 𝑣2(𝒙(𝑡), 𝑡), 𝑣3(𝒙(𝑡), 𝑡)]𝑇 , 𝑣𝑖: 𝐸
3 → 𝐸1 , (2.1) 

where each of the function 𝑣𝑖 is a scalar field and is dependent on the position and time, 

i.e. 𝒗 time-dependent vector field, or does not depend on time, i.e. 𝒗 is time-independent 

vector field. 

A field line is a line that is everywhere tangent to a given vector field at a particular 

time. That is, every point on the line has a tangent that coincides with the vector at that 

location in the vector field. It can be constructed by tracing a path in the direction of the 

vector field while keeping time fixed. Field lines will depict the direction of the vector 

field, but not the magnitude. 
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Figure 2.1: Example of linear vector fields with oriented field lines and vector field arrows 

located in a regular grid. 

Let 𝒙(𝑡) be a field line with parameter 𝑡 representing the time. The field line is 

then given by a system of ordinary differential equations, which can be written as 

 𝑑𝒙(𝑡)

𝑑𝑡
= 𝒗(𝒙(𝑡)) , 𝒙(0) = 𝒙0 , (2.2) 

where 𝒙0 is an initial point. When numerical integration is used to solve the system of 

equations for visualization purposes, the point 𝒙0 is often referred to as a seed point. In 

terms of differential equations, the visualization of the field lines of a vector field 

correspond to phase portraits of solutions of the system (2.2). This will be an important 

concept in the discussion of classification of critical points later. 

2.1 Vector field integration 

The integration through a vector field is a computational challenge, and since it is 

crucial for a lot of methods, it should be explained at the beginning. The explanation will 

be carried out on a flow data – an important, intuitive and probably the most frequent case 

of a vector field. Integrating flow brings the respective path 𝒙(𝑠) of an imaginary particle 

traveling through the field. This path would be analytically defined by 

 

𝒙(𝑠) = 𝒙0 + ∫ 𝒗(𝒙(𝑡), 𝑡 + 𝑡0)𝑑𝑡

𝑠

𝑡=0

 , (2.3) 

where 𝒙0 represents the seed location and 𝑡0 is the starting time when the particle was 

seeded.  This particle trace (2.3) through a vector field is called a pathline.  
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Usually we cannot calculate the equation (2.3) analytically but we need to perform 

a numerical integration. The simplest approach is to use a first-order Euler method to 

compute an approximation. One iteration of the curve integration is calculated as 

 𝒙(𝑡 + ∆𝑡) = 𝒙(𝑡) + ∆𝑡 ∙ 𝒗(𝒙(𝑡), 𝑡) , (2.4) 

where ∆𝑡 is a small time step. A more accurate but also more costly technique is the 

second order Runge-Kutta method, which uses the Euler approximation (2.4) as a hint to 

compute a better approximation of the integral curve described in (2.3) as 

 
𝒙(𝑡 + ∆𝑡) = 𝒙(𝑡) + ∆𝑡

𝒗(𝒙(𝑡), 𝑡) + 𝒗(𝒙(𝑡) + ∆𝑡 ∙ 𝒗(𝒙(𝑡), 𝑡), 𝑡)

2
 . (2.5) 

Obviously, the choice of the time step ∆𝑡 is an issue. Too large step will lead to 

loss of accuracy, and small step will increase the time needed for calculation of the vector 

field integration. 

2.2 Vector field interpolation 

Let’s have a vector field given on a uniform discrete grid. A uniform discrete grid 

is a grid where the grid points are evenly spaced in all dimensions. A vector is associated 

with every grid point. 

Many of the analysis methods and visualization techniques use vectors at positions 

not directly on the grid points of the discrete representation of a vector field. Therefore, 

it is necessary to use an interpolation scheme to approximate the vectors at intermediate 

points between grid cells. A suitable interpolation scheme is the bilinear (in 𝐸2) or 

trilinear (in 𝐸3) interpolation method. For this interpolation method to give a good 

approximation, it is assumed that the resolution of the grid is sufficient, so that the vector 

field is linear, or nearly linear, within every grid cell. 

2.2.1 2D bilinear interpolation 

The bilinear interpolation is an extension of the linear interpolation for 

interpolating functions of two variables (e.g., 𝑥 and 𝑦) on a rectilinear 2𝐷 grid. 

The key idea is to perform linear interpolation first in one direction, and then again 

in the other direction. Although each step is linear in the sampled values and in the 

position, the interpolation as a whole is not linear but rather quadratic in the sample 

location. 
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Figure 2.2: Indexing of vector field data in a 2𝐷 cell. 

The known values are in grid points and to calculate the value inside a cell (see 

Figure 2.2 for indexing), we have to calculate the following formula 

 𝒗(𝑥, 𝑦) = 𝒂 + 𝒃𝑥 + 𝒄𝑦 + 𝒅𝑥𝑦 , (2.6) 

where 𝒂 = [𝑎𝑥, 𝑎𝑦], 𝒃 = [𝑏𝑥, 𝑏𝑦], 𝒄 = [𝑐𝑥, 𝑐𝑦] and 𝒅 = [𝑑𝑥, 𝑑𝑦] are interpolation 

coefficients. To perform an interpolation, the values of interpolation coefficients must be 

determined so we have to solve a system of linear equations. The system is simplified by 

introducing a local parametric coordinate system for the cell. In this local coordinate 

system each component lies in the closed interval [0;  1], i.e. 𝒗0 = [0, 0]𝑇 and  

𝒗3 = [1, 1]𝑇. This will remove many terms from the system because of the zero factor 

that is introduced, and we can determine the interpolation coefficients by solving a 

simpler system of equations  

 

[

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

] ∙ [

𝒂
𝒃
𝒄
𝒅

] = [

𝒗0

𝒗1

𝒗2

𝒗3

] . (2.7) 

Solving this system of linear equations we get the interpolation coefficients 

 

[

𝒂
𝒃
𝒄
𝒅

] = [

𝒗0

−𝒗0 + 𝒗1

−𝒗0 + 𝒗2

𝒗0 − 𝒗1 − 𝒗2 + 𝒗3

] . (2.8) 

Interpolated value 𝒗(𝑥, 𝑦) of a point inside the cell is calculated first by computing 

coefficients from (2.8) and then by inserting them into (2.6). 

2.2.2 3D trilinear interpolation 

Trilinear interpolation is a method of multivariate interpolation on 

a 3-dimensional regular grid. It approximates the value of an intermediate point [𝑥, 𝑦, 𝑧]𝑇. 
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Figure 2.3: Indexing of vector field data in a 3𝐷 cell. 

The known values are in grid points and to calculate the value inside a cell (see 

Figure 2.3 for indexing), we have to calculate the following formula 

 𝒗(𝑥, 𝑦, 𝑧) = 𝒂 + 𝒃𝑥 + 𝒄𝑦 + 𝒅𝑧 + 𝒆𝑥𝑦 + 𝒇𝑥𝑧 + 𝒈𝑦𝑧 + 𝒉𝑥𝑦𝑧 , (2.9) 

where 𝒂, …, 𝒉 are interpolation coefficients. To perform an interpolation, the values of 

interpolation coefficients must be determined in the same way as when doing the 2𝐷 

interpolation. The system of linear equations that has to be solved is  

 

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1]

 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
𝒂
𝒃
𝒄
𝒅
𝒆
𝒇
𝒈
𝒉]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝒗0

𝒗1

𝒗2

𝒗3

𝒗4

𝒗5

𝒗6

𝒗7]
 
 
 
 
 
 
 

 . (2.10) 

Solving this system of linear equations we get the interpolation coefficients 

 

[
 
 
 
 
 
 
 
𝒂
𝒃
𝒄
𝒅
𝒆
𝒇
𝒈
𝒉]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝒗0

−𝒗0 + 𝒗1

−𝒗0 + 𝒗2

−𝒗0 + 𝒗4

𝒗0 − 𝒗1 − 𝒗2 + 𝒗3

𝒗0 − 𝒗1 − 𝒗4 + 𝒗5

𝒗0 − 𝒗2 − 𝒗4 + 𝒗6

−𝒗0 + 𝒗1 + 𝒗2 − 𝒗3 + 𝒗4 − 𝒗5 − 𝒗6 + 𝒗7]
 
 
 
 
 
 
 

 . (2.11) 

Interpolated value 𝒗(𝑥, 𝑦, 𝑧) of a point inside the cell is calculated first by computing 

coefficients from (2.11) and then by inserting them into (2.9). 
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3 Critical points 

Critical points (𝒙0) of the vector field are points at which the magnitude of the 

vector vanishes 

 𝑑𝒙(𝑡)

𝑑𝑡
= 𝒗(𝒙(𝑡)) = 𝟎 , (3.1) 

i.e. all components are equal to zero 

 

[
 
 
 
 
 
𝑑𝑥(𝑡)

𝑑𝑡
𝑑𝑦(𝑡)

𝑑𝑡
𝑑𝑧(𝑡)

𝑑𝑡 ]
 
 
 
 
 

= [
0
0
0
] . (3.2) 

A critical point is said to be isolated, or simple, if the vector field is non-vanishing in an 

open neighbourhood around the critical point. Thus for all surrounding points 𝒙𝜀 of the 

critical point 𝒙0 the equation (3.1) does not apply, i.e. 

 𝑑𝒙𝜀(𝑡)

𝑑𝑡
≠ 𝟎 . (3.3) 

At critical points, the direction of the field line is indeterminate, and they are the 

only points in the vector field were field lines can intersect (asymptotically). The terms 

singular point, null point, neutral point or equilibrium point are also frequently used to 

describe critical points. 

Critical points in vector fields can be classified according to their order. The order 

of the critical point is identical to the topological degree of the critical point. For a closed 

surface 𝜏(𝒙0) surrounding a single critical point 𝒙0 in a continuous 3𝐷 vector field, the 

topological degree of 𝒙0 is defined as the following surface integral [Wan06] 

 
𝐼(𝒙0) =

1

4𝜋
∫ 𝑑𝜃

 

𝜏(𝒙0)

  (3.4) 

and for 2𝐷 vector field as the following curve integral 

 
𝐼(𝒙0) =

1

2𝜋
∫ 𝑑𝜃

 

𝜏(𝒙0)

 , (3.5) 

where 𝜃 is the angle between the vector field and a constant reference vector. The value 

of 𝐼(𝒙0) is always an integer, and the order of the critical point is the absolute value of 

this integer (see Figure 3.1 and Figure 3.2 for few examples). A surface, resp. curve, 𝜏 

enclosing a region which does not contain a critical point has a topological degree of zero. 
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Figure 3.1: Vector fields on circles around critical points, their Gauss maps and the order of 

critical points (𝑖𝑛𝑑(𝒄)) from [Man02]. 

 

  

Figure 3.2: Example of first order critical point (left) and a second order critical point (right). 

Given a curve in a vector field, the Poincaré-index is defined as the total rotation 

of the vectors of the vector field along the curve. For a closed curve in a continuous 2𝐷 

vector field the number of rotations will always be an integer since the start and the end 

vectors will be identical. See Figure 3.3 for an example in 2𝐷 for an open curve. The 

angle between two vectors is calculated using the formula 

 𝜃 = cos−1(𝒖 ∙ 𝒗) ,  (3.6) 

where 𝒖 and 𝒗 are normalized vectors. 



3     Critical points 

 
  

15 

 

Figure 3.3: Calculating the order of 2𝐷 critical point (𝑖𝑛𝑑(𝒄)). 

The topological degree of a discrete 3𝐷 vector field can be calculated as 

following. We need to create a triangulation that creates a closed surface. The second step 

is to sum all the solid angles formed with three vectors for each triangle (see Figure 3.4) 

to calculate the integral ∫ 𝑑𝜃
 

𝜏(𝒙0)
 discretely. The solid angle 𝜃 can be calculated using the 

following formula 

tan (
1

2
𝜃) 

     =
|𝑩1 𝑩2 𝑩3|

‖𝑩1‖‖𝑩2‖‖𝑩3‖ + (𝑩1 ∙ 𝑩2)‖𝑩3‖ + (𝑩1 ∙ 𝑩3)‖𝑩2‖ + (𝑩2 ∙ 𝑩3)‖𝑩1‖
 ,  

(3.7) 

where |𝑩1 𝑩2 𝑩3| denotes the determinant of the matrix that results when writing the 

vectors together in a row; this is also equivalent to the scalar triple product of the three 

vectors, i.e. 

 |𝑩1 𝑩2 𝑩3| = (𝑩1 × 𝑩2) ∙ 𝑩3 .  (3.8) 

 

 

Figure 3.4: Illustration of the solid angle for three points forming a tringle. 

3.1 Location of critical points 

Location of critical points is important step in flow field visualization and feature 

extraction. There exist several approaches for extracting isolated zeros of scalar, vector 
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and tensor fields [Ben66], [Gjø04], [Gre92], [Man02], [Pre92]. Combinatorial methods 

become particularly attractive, as they are not sensitive to numerical instabilities or the 

details of a particular implementation. [Bha14] introduced a robust method for detecting 

singularities in vector fields. They establish, in combinatorial terms, necessary and 

sufficient conditions for the existence of a critical point in a cell of a simplicial mesh for 

a large class of interpolation functions. These conditions are entirely local and lead to a 

provably consistent and practical algorithm to identify cells containing singularities. 

Other selected algorithms for critical points location are presented in the following 

subchapters. 

3.1.1 Newton-Raphson method 

In this section we will discuss the simplest multidimensional root finding method, 

Newton-Raphson [Ben66], [Pre92]. This method gives you a very efficient means of 

converging to a root, if we have a sufficiently good initial guess. It can also spectacularly 

fail to converge, indicating (though not proving) that our putative root does not exist 

nearby. 

Let 𝒑0 be a good estimate of critical point 𝒙0 and let 𝒙0 = 𝒑0 + 𝒉. Since the true 

critical point is 𝒙0, and 𝒉 = 𝒙0 − 𝒑0, the vector 𝒉 measures how far the estimate 𝒑0 is 

from the truth critical point. 

In the neighbourhood of 𝒑0 each of the functions 𝒗 = [𝑣𝑥, 𝑣𝑦]
𝑇
 can be expanded 

in Taylor series  

 
𝒗(𝒑) = 𝒗(𝒑0) +

𝜕𝒗

𝜕𝒙
(𝒑 − 𝒑0) , (3.9) 

where  

 
𝑱 =

𝜕𝒗

𝜕𝒙
 , (3.10) 

and 𝑱 is the Jacobian matrix. By setting 𝒗(𝒑) = 𝟎, we obtain a set of linear equations for 

the corrections 𝒉 = (𝒑 − 𝒑0) that move each function closer to zero simultaneously, 

namely 

 𝑱 ∙ 𝒉 = −𝒗(𝒑0) . (3.11) 

Matrix equation (3.11) can be solved by the well-known LU decomposition. The 

corrections are then added to the solution vector 

 𝒑𝑛𝑒𝑤 = 𝒑𝑜𝑙𝑑 + 𝒉 . (3.12) 

and the process is iterated to convergence. In general it is a good to check the degree to 

which both functions and variables have converged. 
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3.1.2 Analytic method 

[Gjø04] described a new analytical method for locating critical points. The 3𝐷 

vector field can be interpolated using trilinear interpolation with the following definition 

 𝑣𝑥(𝑥, 𝑦, 𝑧) = 𝑎1 + 𝑏1𝑥 + 𝑐1𝑦 + 𝑑1𝑧 + 𝑒1𝑥𝑦 + 𝑓1𝑥𝑧 + 𝑔1𝑦𝑧 + ℎ1𝑥𝑦𝑧 

𝑣𝑦(𝑥, 𝑦, 𝑧) = 𝑎2 + 𝑏2𝑥 + 𝑐2𝑦 + 𝑑2𝑧 + 𝑒2𝑥𝑦 + 𝑓2𝑥𝑧 + 𝑔2𝑦𝑧 + ℎ2𝑥𝑦𝑧 

𝑣𝑧(𝑥, 𝑦, 𝑧) = 𝑎3 + 𝑏3𝑥 + 𝑐3𝑦 + 𝑑3𝑧 + 𝑒3𝑥𝑦 + 𝑓3𝑥𝑧 + 𝑔3𝑦𝑧 + ℎ3𝑥𝑦𝑧 . 

(3.13) 

When finding a critical point, the three equations must fulfil the following equations 

  𝑣𝑥(𝑥, 𝑦, 𝑧) = 0 

𝑣𝑦(𝑥, 𝑦, 𝑧) = 0 

𝑣𝑧(𝑥, 𝑦, 𝑧) = 0 . 

(3.14) 

This system of equations can be solved using an analytic method. The strategy is as 

follows: First the interpolation coefficients (𝑎1, 𝑎2, 𝑎3, 𝑏1, … , ℎ3) must be computed. 

Variable 𝑧 is then eliminated from the first equation in (3.13).  

 
𝑧 =

𝑎1 + 𝑏1𝑥 + 𝑐1𝑦 + 𝑒1𝑥𝑦

𝑑1 + 𝑓1𝑥 + 𝑔1𝑦 + ℎ1𝑥𝑦
 . (3.15) 

The expression (3.15) for 𝑧 is inserted into the two other equations in (3.13) giving two 

functions 𝜉(𝑥, 𝑦) and 𝜙(𝑥, 𝑦). 

𝜉(𝑥, 𝑦) = (𝐴1𝑥
2 + 𝐵1𝑥 + 𝐶1)𝑦

2 + (𝐴2𝑥
2 + 𝐵2𝑥 + 𝐶2)𝑦 + (𝐴3𝑥

2 + 𝐵3𝑥 + 𝐶3) 

𝜙(𝑥, 𝑦) = (𝐴4𝑥
2 + 𝐵4𝑥 + 𝐶4)𝑦

2 + (𝐴5𝑥
2 + 𝐵5𝑥 + 𝐶5)𝑦 + (𝐴6𝑥

2 + 𝐵6𝑥 + 𝐶6) , 
(3.16) 

where  

 𝐴1 = 𝑒2ℎ1
− ℎ2𝑒1 

𝐵1 = 𝑒2𝑔1 − 𝑔2𝑒1 + 𝑐2ℎ1 − ℎ2𝑐1 

𝐶1 = 𝑐2𝑔1 − 𝑔2𝑐1 

𝐴2 = 𝑒2𝑓1 − 𝑓2𝑒1 + 𝑏2ℎ1 − ℎ2𝑏1 

𝐵2 = 𝑒2𝑑1 − 𝑑2𝑒1 + 𝑐2𝑓1 − 𝑓2𝑐1 + 𝑏2𝑔1 − 𝑔2𝑏1 + 𝑎2ℎ1 − ℎ2𝑎1 

𝐶2 = 𝑐2𝑑1 − 𝑑2𝑐1 + 𝑎2𝑔1 − 𝑔2𝑎1 

𝐴3 = 𝑏2𝑓1 − 𝑓2𝑏1 

𝐵3 = 𝑏2𝑑1 − 𝑑2𝑏1 + 𝑎2𝑓1 − 𝑓2𝑎1 

𝐶3 = 𝑎2𝑑1 − 𝑑2𝑎1 , 

(3.17) 

and 
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 𝐴4 = 𝑒3ℎ1
− ℎ3𝑒1 

𝐵4 = 𝑒3𝑔1 − 𝑔3𝑒1 + 𝑐3ℎ1 − ℎ3𝑐1 

𝐶4 = 𝑐3𝑔1 − 𝑔3𝑐1 

𝐴5 = 𝑒3𝑓1 − 𝑓3𝑒1 + 𝑏3ℎ1 − ℎ3𝑏1 

𝐵5 = 𝑒3𝑑1 − 𝑑3𝑒1 + 𝑐3𝑓1 − 𝑓3𝑐1 + 𝑏3𝑔1 − 𝑔3𝑏1 + 𝑎3ℎ1 − ℎ3𝑎1 

𝐶5 = 𝑐3𝑑1 − 𝑑3𝑐1 + 𝑎3𝑔1 − 𝑔3𝑎1 

𝐴6 = 𝑏3𝑓1 − 𝑓3𝑏1 

𝐵6 = 𝑏3𝑑1 − 𝑑3𝑏1 + 𝑎3𝑓1 − 𝑓3𝑎1 

𝐶6 = 𝑎3𝑑1 − 𝑑3𝑎1 . 

(3.18) 

These two equations are solved so that  

 𝜉(𝑥, 𝑦) = 0 

𝜙(𝑥, 𝑦) = 0 . 
(3.19) 

For a given 𝑥 there must be a common value 𝑦 that solves both equations (3.19). To 

determine this common factor, if any, one possibility is to use the determinant of the 

Sylvester matrix to find a polynomial which can be solved for 𝑥, see [Gar92].  

When the roots of the polynomial are determined using the numerical method, the 

next step is to determine which roots are the candidates for the 𝑥 component of the critical 

points. The candidates are the values that are real and inside the closed unit interval. The 

candidate values of 𝑥 are inserted into 𝜉(𝑥, 𝑦) and 𝜙(𝑥, 𝑦) to see if there is at least one 

common root for 𝑦. For each pair (𝑥, 𝑦) that solves both equations, the values are inserted 

in (3.15) to find the corresponding 𝑧 value.  

Not all values (𝑥, 𝑦, 𝑧) that are computed correspond to true critical points in the 

cell. Every candidate point is therefore forwarded to a validation step to test if it is a true 

critical point. 

3.1.3 Octree and topological degree method 

According to [Gre92], [Man02] the space is subdivided into several cubes in a 

regular grid. If the index of a cube is nonzero, then a critical point was found, or perhaps 

a collection of critical points inside the cube. Then the cube has to be subdivided and thus 

create an octree structure. The subdivision step takes place until the cube has nonzero 

index and the size of cube is smaller than some defined smallest resolution. At this point 

a center of the cube is said to be the critical point.  

Some of the critical points can be miss as the topological degree of critical points 

is additive. When two critical points with topological degree +1 and −1 are in the same 

cube, then the resulting topological degree of the cube is 0.  
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3.2 Linearization of vector field 

Critical points can be characterized according to the behaviour of nearby tangent 

curves. We can use a particular set of these curves to define a skeleton that characterizes 

the global behaviour of all other tangent curves in the vector field. An important feature 

of differential equations is that it is often possible to determine the local stability of a 

critical point by approximating the system by a linear system. These approximations are 

aimed at studying the local behaviour of a system, where the nonlinear effects are 

expected to be small. In this section we discuss how to locally approximate a system by 

its linearization. The Taylor series expansion must be utilized locally to find the relation 

between 𝒗 and position 𝒙, supposing the flow 𝒗 to be sufficiently smooth and 

differentiable. In such case, the expansion of 𝒗 around the critical points 𝒙0 is  

 
𝒗(𝒙) = 𝒗(𝒙0) +

𝜕𝒗

𝜕𝒙
(𝒙 − 𝒙0) . (3.20) 

As 𝒗(𝒙0) is according to (3.1) equal zero for critical points, we can rewrite equation 

(3.20) using matrix notation 

 𝒗 = 𝑱 ∙ (𝒙 − 𝒙0) 

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

] =

[
 
 
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦

𝜕𝑣𝑥

𝜕𝑧
𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑦

𝜕𝑣𝑦

𝜕𝑧
𝜕𝑣𝑧

𝜕𝑥

𝜕𝑣𝑧

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑧 ]
 
 
 
 
 
 

∙ [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

] . 
(3.21) 

If we consider an inverted pendulum whose open loop dynamics are given by 

 𝑑𝒙(𝑡)

𝑑𝑡
= [

𝑦
sin 𝑥 − 𝛾𝑦] , (3.22) 

where a coefficient of viscous friction is 𝛾, 𝑥 = 𝜃 is the angle and 𝑦 = �̇� is the angular 

rate. One of the critical points is the point 𝒙0 = [𝜋, 0]𝑇 and the linearization of the 

dynamical system at this point is according to (3.21) equal to 
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[
𝑣𝑥

𝑣𝑦
] =

[
 
 
 
 

𝜕𝑦

𝜕𝑥

𝜕𝑦

𝜕𝑦

𝜕(sin 𝑥 − 𝛾𝑦)

𝜕𝑥

𝜕(sin 𝑥 − 𝛾𝑦)

𝜕𝑦 ]
 
 
 
 

 ||

𝒙0=[𝜋,0]𝑇

∙ [
𝑥 − 𝑥0

𝑦 − 𝑦0
]  

 

= [
0 1

cos 𝑥 −𝛾
] |

𝒙0=[𝜋,0]𝑇
. [

𝑥 − 𝑥0

𝑦 − 𝑦0
] 

 

= [
0 1

−1 −𝛾
] . [

𝑥 − 𝜋
𝑦 ] . 

(3.23) 

We call the system (3.23) the linear approximation of the original nonlinear system or the 

linearization at the critical point 𝒙0. The phase portrait of this linear approximation and 

original nonlinear phase portrait can be seen in (Figure 3.5), where 𝒙 − 𝒙0 = 𝒛. 

 
a) Nonlinear approximation 

 
b) Linear approximation 

Figure 3.5: Comparison between the phase portraits for the full nonlinear system (a) and its linear 

approximation around the critical point at 𝒙𝟎 = [𝜋, 0]𝑇 (b). Notice that near the critical point at 

the center of the plots, the phase portraits are almost identical, i.e. the dynamics in both phase 

portraits are almost identical [Ast10]. 

3.3 Vector field approximation using second derivative 

Vector fields are approximated using only linear approximation to determine the 

local behaviour of the vector field. However, linearization gives as basic classification of 

the critical points and about the flow around them, the approximation using second order 

derivatives will give us some more information as we propose in [Smo16c]. 

The approximation of vector field around a critical point using the second order 

derivative must be written for each vector component (𝑣𝑥 and 𝑣𝑦) separately, see the 

following equations 
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𝑣𝑥 =

[
 
 
 
𝜕𝑣𝑥

𝜕𝑥
𝜕𝑣𝑥

𝜕𝑦 ]
 
 
 
𝑇

∙ [
∆𝑥
∆𝑦

] +
1

2
[
∆𝑥
∆𝑦

]
𝑇

∙

[
 
 
 
 
𝜕2𝑣𝑥

𝜕𝑥2

𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦

𝜕2𝑣𝑥

𝜕𝑦𝜕𝑥

𝜕2𝑣𝑥

𝜕𝑦2 ]
 
 
 
 

∙ [
∆𝑥
∆𝑦

]   (3.24)

𝑣𝑦 =

[
 
 
 
𝜕𝑣𝑦

𝜕𝑥
𝜕𝑣𝑦

𝜕𝑦 ]
 
 
 
𝑇

∙ [
∆𝑥
∆𝑦

] +
1

2
[
∆𝑥
∆𝑦

]
𝑇

∙

[
 
 
 
 
𝜕2𝑣𝑦

𝜕𝑥2

𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦

𝜕2𝑣𝑦

𝜕𝑦𝜕𝑥

𝜕2𝑣𝑦

𝜕𝑦2 ]
 
 
 
 

∙ [
∆𝑥
∆𝑦

] , (3.25)

where ∆𝑥 = 𝑥 − 𝑥0 and ∆𝑦 = 𝑦 − 𝑦0. These two equations can be written in matrix 

notation as well 

𝑣𝑥 = 𝑱𝑥 ∙ (𝒙 − 𝒙0) +
1

2
(𝒙 − 𝒙0)

𝑇 ∙ 𝑯𝑥 ∙ (𝒙 − 𝒙0)   (3.26)

𝑣𝑦 = 𝑱𝑦 ∙ (𝒙 − 𝒙0) +
1

2
(𝒙 − 𝒙0)

𝑇 ∙ 𝑯𝑦 ∙ (𝒙 − 𝒙0) , (3.27)

where 𝑯𝑥 and 𝑯𝑦 are Hessian matrices, 𝑱𝑥 is the first row of Jacobian matrix and 𝑱𝑦 is 

the second row of Jacobian matrix. 

The Hessian matrix is a square matrix of second-order partial derivatives of a 

scalar-valued function, or scalar field. It describes the local curvature of a function of 

many variables. 

Approximation of vector field using (3.24) and (3.25) gives us more detailed 

description than approximation of vector field using linear approximation, see Figure 3.6. 

The approximation in Figure 3.6 (right) gives us the same information like in Figure 3.6 

(left), although we can see the curvature of the two main axis for the saddle.  
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Figure 3.6: Comparison between the phase portraits for the vector field approximated using linear 

approximation (left) and using second order derivative (right). 

Equations (3.24) and (3.25) can be rewritten in different formulas as follows 

 𝑣𝑥 =
1

2
[∆𝑥 ∆𝑦 1] ∙

[
 
 
 
 
 
 
𝜕2𝑣𝑥

𝜕𝑥2

𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦

𝜕𝑣𝑥

𝜕𝑥

𝜕2𝑣𝑥

𝜕𝑦𝜕𝑥

𝜕2𝑣𝑥

𝜕𝑦2

𝜕𝑣𝑥

𝜕𝑦
𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦
0

]
 
 
 
 
 
 

∙ [

∆𝑥

∆𝑦

1

] , (3.28)

 𝑣𝑦 =
1

2
[∆𝑥 ∆𝑦 1] ∙

[
 
 
 
 
 
 
𝜕2𝑣𝑦

𝜕𝑥2

𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦

𝜕𝑣𝑦

𝜕𝑥

𝜕2𝑣𝑦

𝜕𝑦𝜕𝑥

𝜕2𝑣𝑦

𝜕𝑦2

𝜕𝑣𝑦

𝜕𝑦
𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑦
0

]
 
 
 
 
 
 

∙ [

∆𝑥

∆𝑦

1

] . (3.29)

These two equations have some geometrical background. When 𝑣𝑥 and 𝑣𝑦 are 

equal zero, each equation describes some conic section. 

Approximation of the vector field using Hessian matrix, i.e. using second order 

derivatives, is a bit more computationally expensive than the standard linear 

approximation but gives us more detailed description of the vector field as will be seen 

in the following chapters. 

3.3.1 Conic Section.  

A conic is the curve obtained as the intersection of a plane, called the cutting plane, 

with a double cone, see Figure 3.7. Planes that pass through the vertex of the cone will 
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intersect the cone in a point, a line or a pair of intersecting lines. These are called 

degenerate conics and some authors do not consider them to be conics at all.  

There are three types of non-degenerated conics, the ellipse, parabola, and 

hyperbola, Figure 3.7. The circle is a special kind of ellipse. The circle and the ellipse 

arise when the intersection of the cone and plane is a closed curve. The circle is obtained 

when the cutting plane is parallel to the plane of the generating circle of the cone, this 

means that the cutting plane is perpendicular to the symmetry axis of the cone. If the 

cutting plane is parallel to exactly one generating line of the cone, then the conic is 

unbounded and is called a parabola. In the remaining case, the figure is a hyperbola. In 

this case, the plane will intersect both halves of the cone, producing two separate 

unbounded curves. 

 

Figure 3.7: Types of conic sections, i.e. parabola, circle and ellipse, and hyperbola.1 

A conic section is described by the following implicit equation 

[𝑥 𝑦 1] ∙ [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] ∙ [
𝑥
𝑦
1
] = 0 . (3.30)

where 𝑎𝑖𝑗  𝑖, 𝑗 ∈ {1, 2, 3} are coefficients of conic section. Depending on these values, we 

can classify the types of conic sections. To do that, we need to compute two determinants 

Ω = |

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

|   (3.31)

ω = |
𝑎11 𝑎12

𝑎21 𝑎22
| . (3.32)

When knowing determinants Ω and ω we can easily classify the type of conic section 

using the following table 

                                                 
1 image source: https://en.wikipedia.org/wiki/Conic_section  
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Table 3.1: Classification of conic section (from [Bar71]). 

 ω ≠ 0 ω = 0 

Ω ≠ 0 
ω > 0 ω < 0 

parabola 
ellipse hyperbola 

Ω = 0 
pair of intersecting 

lines 
pair of parallel lines 

 

Equations (3.28) and (3.29) are the same as (3.30) when 𝑣𝑥 = 0 and 𝑣𝑦 = 0 and 

therefore they geometrically represent conic sections. 

3.4 Classification of critical points 

There exist a finite set of fundamentally different critical points, defined by the 

number of inflow and outflow directions, spiralling structures etc., and combinations of 

these. Since the set is finite, each critical point can be classified. Such a classification 

defines the field completely in a close neighbourhood around the critical point. By 

knowing the location and classification of critical points in a vector field, the topology of 

the field is known in small areas around these. Assuming a smooth transition between 

these areas, one can construct a simplified model of the whole vector field. Such a 

simplified representation is useful, for instance, in compressing vector field data into 

simpler building blocks [Phi97]. 

The critical points are classified based on the vector field around that point. The 

information derived from the classification of critical points aids the information selection 

process when it comes to visualizing the field. By choosing seed points for field lines 

based on the topology of critical points, field lines encoding important information is 

ensured. A more advanced approach is to connect critical points, and use the connecting 

lines and surfaces to separate areas of different flow topology [Hel89], [Wei05]. 

3.4.1 Standard classification using a linear approximation 

In the study of steady flow/autonomous dynamical systems certain features such 

as critical points, separatrices and closed orbits play an important role. In 1989, Helman 

and Hesselink introduced these concepts to the visualization community under the name 

of vector field topology [Hel89]. Methods for visualizing steady flow fields, especially 

planar flow fields, have achieved a high level of proficiency, whereas the unsteady case 

is still challenging and by no means complete [Lar07], [Sal08]. 

The fact that a linear model can be used to study the behaviour of a nonlinear 

system near a critical point is a powerful one. If we consider the Taylor series expansion 

of the field in the neighbourhood of such a point, then the first order partial derivatives of 

the field (with respect to position) determine the vector field’s behaviour. Thus for 

nondegenerate critical point, we can use the Jacobian matrix (see equation (3.33)) to 

characterize the vector field and the behaviour of nearby tangent curves. 
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𝑱 =

[
 
 
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦

𝜕𝑣𝑥

𝜕𝑧
𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑦

𝜕𝑣𝑦

𝜕𝑧
𝜕𝑣𝑧

𝜕𝑥

𝜕𝑣𝑧

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑧 ]
 
 
 
 
 
 

      or      𝑱 =

[
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦
𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑦 ]
 
 
 
 

 . (3.33) 

The eigenvalues and eigenvectors of Jacobian matrix are very important for vector 

field classification and description. For the eigenvalues and eigenvectors the following 

equation applies  

 𝑱𝒖 = 𝜆𝒖 , (3.34) 

where 𝜆 is the eigenvalue and 𝒖 is the corresponding eigenvector. To compute the 

eigenvalues, we have to solve 

 (𝑱 − 𝜆𝑰)𝒖 = 𝟎 , (3.35) 

where 𝑰 is the identity matrix. Knowing Cramer’s rule, a linear system of equations has 

nontrivial solution if the determinant vanishes, so the solutions of equation (3.35) are 

given by  

 𝑑𝑒𝑡(𝑱 − 𝜆𝑰) = 0 . (3.36) 

A real eigenvector of the Jacobian matrix defines a direction such that if we move 

slightly from the critical point in that direction, the field is parallel to the direction we 

moved. Thus, at the critical point, the real eigenvectors are tangent to the trajectories that 

end on the point. The sign of the corresponding eigenvalue determines whether the 

trajectory is outgoing (repelling) or incoming (attracting) at the critical point. The 

imaginary part of an eigenvalue denotes circulation about the point. 

Now suppose that 𝒙 is on the line determined by an eigenvector 𝒖 for an 

eigenvalue 𝜆. That is, 𝒙 = 𝑡𝒖 for some scalar 𝑡. Then 

 𝒗(𝒙) = 𝑱𝒙 = 𝑱 ∙ (𝑡𝒖) = 𝑡 ∙ 𝑱𝒖 = 𝑡𝜆𝒖 . (3.37) 

The derivative is a multiple of 𝒖 and hence points along the line determined by 𝒖. 

As 𝜆 > 0, the derivative points in the direction of 𝒖 when 𝑡 is positive and in the opposite 

direction when 𝑡 is negative. The lines determined by the eigenvectors, and arrows on the 

lines to indicate the directions can be seen in Figure 3.8.  
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Figure 3.8: Eigenvectors of 𝑱 with directions (left). Example source vector field with 

eigenvectors and solutions (right). 

 

 

Figure 3.9: Classification of 2𝐷 first order critical points. 𝑅1, 𝑅2 denote the real parts of the 

eigenvalues of the Jacobian matrix while 𝐼1, 𝐼2 denote their imaginary parts (from [Hel89]). 

Classification of first order critical points can be done using eigenvalues of 

Jacobian matrix. We have 6 types of first order critical points in 2𝐷 (see Figure 3.9) and 

8 in 3𝐷 (see Figure 3.10). 
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Figure 3.10: Classification of 3𝐷 first order critical points (from [For09]). 

3.4.2 Curvature of vector field 

Approximated vector field using (3.26) and (3.27) is not only linear but contains 

the Hessian matrices that describe the local curvature of the vector field. In this chapter, 

we will introduce our approach [Smo16c] how to compute the local curvature of a vector 

field that is approximated with Jacobian and Hessian matrices.  

Using an approximation of the vector field with second order derivatives gives us 

the opportunity to compute a Jacobian matrix 𝑱𝜀 in the neighborhood of a critical point 

from approximated vector field (3.26) and (3.27) as 

 

𝑱𝜀 =

[
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥
|
𝒙0+𝜺

𝜕𝑣𝑥

𝜕𝑦
|
𝒙0+𝜺

𝜕𝑣𝑦

𝜕𝑥
|
𝒙0+𝜺

𝜕𝑣𝑦

𝜕𝑦
|
𝒙0+𝜺]

 
 
 
 

 , (3.38) 

where 𝜺 = [𝑒𝑥, 𝑒𝑦]
𝑇
 is an arbitrary direction vector pointing from the critical point 𝒙0. 

The matrix 𝑱𝜺 (2 × 2) in (3.38) can be rewritten using elements of 𝑱 in (3.21), elements 

of 𝑯𝑥 in (3.24) and elements of 𝑯𝑦 in (3.25) as 
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𝑱𝜀 =

[
 
 
 
 
 𝜕𝑣𝑥

𝜕𝑥
|
𝒙0

+
𝜕2𝑣𝑥

𝜕𝑥2
|
𝒙0

𝜀𝑥 +
1

2
(

𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦
|
𝒙0

+
𝜕2𝑣𝑥

𝜕𝑦𝜕𝑥
|
𝒙0

) 𝜀𝑦

𝜕𝑣𝑦

𝜕𝑥
|
𝒙0

+
𝜕2𝑣𝑦

𝜕𝑥2
|
𝒙0

𝜀𝑥 +
1

2
(
𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦
|
𝒙0

+
𝜕2𝑣𝑦

𝜕𝑦𝜕𝑥
|
𝒙0

) 𝜀𝑦

 

 

  
𝜕𝑣𝑥

𝜕𝑦
|
𝒙0

+
𝜕2𝑣𝑥

𝜕𝑦2
|
𝒙0

𝜀𝑥 +
1

2
(

𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦
|
𝒙0

+
𝜕2𝑣𝑥

𝜕𝑦𝜕𝑥
|
𝒙0

)𝜀𝑥

 
𝜕𝑣𝑦

𝜕𝑦
|
𝒙0

+
𝜕2𝑣𝑦

𝜕𝑦2
|
𝒙0

𝜀𝑥 +
1

2
(
𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦
|
𝒙0

+
𝜕2𝑣𝑦

𝜕𝑦𝜕𝑥
|
𝒙0

)𝜀𝑥
]
 
 
 
 
 

 , 

(3.39) 

Assuming that 𝒗 has continuous second partial derivatives at any given point, the mixed 

derivatives of 𝑣𝑥 and 𝑣𝑦 in the Hessian matrix are commutative (Schwarz’s theorem) 

 𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦
|
𝒙0

=
𝜕2𝑣𝑥

𝜕𝑦𝜕𝑥
|
𝒙0

 and 
𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦
|
𝒙0

=
𝜕2𝑣𝑦

𝜕𝑦𝜕𝑥
|
𝒙0

 . (3.40) 

Equation (3.39) can be rewritten using (3.40) as 

 

𝑱𝜀 =

[
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥
|
𝒙0

𝜕𝑣𝑥

𝜕𝑦
|
𝒙0

𝜕𝑣𝑦

𝜕𝑥
|
𝒙0

𝜕𝑣𝑦

𝜕𝑦
|
𝒙0]

 
 
 
 

+

[
 
 
 
 
𝜕2𝑣𝑥

𝜕𝑥2
|
𝒙0

𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦
|
𝒙0

𝜕2𝑣𝑦

𝜕𝑥2
|
𝒙0

𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦
|
𝒙0]

 
 
 
 

𝜀𝑥 +

[
 
 
 
 
𝜕2𝑣𝑥

𝜕𝑥𝜕𝑦
|
𝒙0

𝜕2𝑣𝑥

𝜕𝑦2
|
𝒙0

𝜕2𝑣𝑦

𝜕𝑥𝜕𝑦
|
𝒙0

𝜕2𝑣𝑦

𝜕𝑦2
|
𝒙0]

 
 
 
 

𝜀𝑦 (3.41) 

Elements of 𝑱, 𝑯𝑥 and 𝑯𝑦 matrices in (3.26) and (3.27) are elements used to 

calculate 𝑱𝜀 in (3.39) and (3.41), so there is no need to compute any additional derivatives 

than those in (3.26) and (3.27). Note that the Jacobian matrix 𝑱𝜀 is for 𝜺 = [0,0]𝑇 equal 

to Jacobian matrix 𝑱 in (3.21). 

The Jacobian matrix 𝑱𝜀 can be computed for any point (𝒙𝟎 + 𝜺). Therefore, we 

start by computing the eigenvectors of Jacobian matrix 𝑱 in a critical point 𝒙0.  

There exist two eigenvectors (𝒖1 and 𝒖2) for a Jacobian matrix in 2𝐷. In the case, 

that the vector field is circular around the critical point, we will use only the real part of 

the eigenvectors, i.e. 

  𝑅𝑒(𝑎 + 𝑏𝑖) = 𝑎
𝐼𝑚(𝑎 + 𝑏𝑖) = 𝑏

          𝑎, 𝑏 ∈ ℝ (3.42) 
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To calculate the curvature of the vector field we need to compute the eigenvectors 

in the near surroundings of the critical point as we explain later. First, we need to compute 

vectors pointing from 𝒙0 in the direction of main axes of the vector field, i.e. 

𝜺1𝐿 = −
𝑅𝑒(𝒖1)

‖𝑅𝑒(𝒖1)‖
ℎ 𝜺1𝑅 =

𝑅𝑒(𝒖1)

‖𝑅𝑒(𝒖1)‖
ℎ   

(3.43)

𝜺2𝐿 = −
𝑅𝑒(𝒖2)

‖𝑅𝑒(𝒖2)‖
ℎ 𝜺2𝑅 =

𝑅𝑒(𝒖2)

‖𝑅𝑒(𝒖2)‖
ℎ , 

where ℎ is some small number (e.g. ℎ = 10−3 for the vector field in Figure 3.12).  

In the next step, we calculate Jacobian matrix 𝑱𝜀 for all vectors computed in (3.43), 

i.e. Jacobian matrix at points (𝒙0 + 𝜺∗∗) 

𝑱1𝐿 = 𝑱𝜀(𝜺1𝐿) 𝑱1𝑅 = 𝑱𝜀(𝜺1𝑅)   

(3.44)

𝑱2𝐿 = 𝑱𝜀(𝜺2𝐿) 𝑱2𝑅 = 𝑱𝜀(𝜺2𝑅) . 

For each Jacobian matrix in (3.44) we need to calculate real parts of both 

eigenvectors and determine which one is pointing in the almost same direction like 

original eigenvector 𝑅𝑒(𝒖1) for 𝑱1𝐿 and 𝑱1𝑅 and determine 𝒖1𝐿 and 𝒖1𝑅, resp. similarly 

eigenvector 𝑅𝑒(𝒖2) for 𝑱2𝐿 and 𝑱2𝑅 and determine 𝒖2𝐿 and 𝒖2𝑅. This test can be done 

using the dot product between original eigenvector 𝑅𝑒(𝒖𝑖), where 𝑖 = {1, 2}, and both 

real parts of eigenvectors for Jacobian matrix 𝑱𝑖∗ in (3.44). The closest two vectors, i.e. 

vectors with minimal angle between them, have the greatest dot product. Therefore, for 

each directional vector in (3.43) we get one vector, thus four vectors 𝒖1𝐿, 𝒖1𝑅, 𝒖2𝐿 and 

𝒖2𝑅, i.e. for example 𝒖1𝐿 is computed as the following procedure 

{ 𝝃 
1

1𝐿 , 𝝃 
2

1𝐿} = 𝑅𝑒(𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠(𝑱1𝐿)) 

 

𝒖1𝐿 = { 
𝝃 

1
1𝐿 𝝃 

1
1𝐿 ∙ 𝑅𝑒(𝒖1) > 𝝃 

2
1𝐿 ∙ 𝑅𝑒(𝒖1)

𝝃 
2

1𝐿 𝝃 
1

1𝐿 ∙ 𝑅𝑒(𝒖1) > 𝝃 
2

1𝐿 ∙ 𝑅𝑒(𝒖1)
 

(3.45)

The curvature vectors of a vector field are computed as follows  

𝒄1 =
1

2ℎ
(

𝒖1𝑅

‖𝒖1𝑅‖
−

𝒖1𝐿

‖𝒖1𝐿‖
) 

 

𝒄2 =
1

2ℎ
(

𝒖2𝑅

‖𝒖2𝑅‖
−

𝒖2𝐿

‖𝒖2𝐿‖
) . 

(3.46)

This is a discrete formula for curvature calculation using the difference of two unit 

vectors. 
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The important property of the curvature vectors in (3.46) is that they are 

perpendicular to 𝑅𝑒(𝒖1), resp. 𝑅𝑒(𝒖2), i.e. 

𝒄1 ∙ 𝑅𝑒(𝒖1) = 0 
 

𝒄2 ∙ 𝑅𝑒(𝒖2) = 0 . 
(3.47)

The length of the curvature vectors in (3.46) is a number that characterizes how 

much is each the main axis of the vector field curved. In the case that both curvatures are 

equal zero, then matrices 𝑯𝑥 and 𝑯𝑦 must be zero matrices otherwise at least one of the 

curvatures is nonzero.  

3.4.2.1 Examples of vector field curvature 

Vector field around a critical point can be classified as one of the vector type, see 

Figure 3.9 and Figure 3.10. In this chapter, we will show examples how the vector field 

approximated with the same Jacobian matrix changes when changing the Hessian 

matrices used to approximate the vector field around a critical point. 

Vector field around a saddle point 

An example of the vector field around a saddle point can be characterized with the 

following approximation 

𝑣𝑥 = [
1.2
1.4

]
𝑇

∙ [
∆𝑥
∆𝑦

] +
1

2
𝑡 [

∆𝑥
∆𝑦

]
𝑇

∙ [
1.2 0.84
0.84 1.2

] ∙ [
∆𝑥
∆𝑦

] 

  

𝑣𝑦 = [
0.7

−0.9
]
𝑇

∙ [
∆𝑥
∆𝑦

] +
1

2
𝑡 [

∆𝑥
∆𝑦

]
𝑇

∙ [
−2 0.6
0.6 2

] ∙ [
∆𝑥
∆𝑦

] , 

(3.48)

where 𝑡 ∈ ℝ is a parameter. If we will continuously change the parameter 𝑡, the vector 

field will change continuously as well, i.e. there will be no discontinuity. 

As an example, the parameter 𝑡 ∈ 〈−1; 1〉 was changed and both curvatures of the 

main axes of the vector field were calculated. It can be seen that both the curvatures 

change continuously (see results in Figure 3.11). For parameter 𝑡 = 0 is the vector field 

approximated only with Jacobian matrix part of (3.48), i.e.  

𝑣𝑥 = [
1.2
1.4

]
𝑇

∙ [
∆𝑥
∆𝑦

] 

  

𝑣𝑦 = [
0.7

−0.9
]
𝑇

∙ [
∆𝑥
∆𝑦

] 

(3.49)

and both the curvatures are thus equal to 0.  
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Figure 3.11: Progress of both curvatures when changing the parameter 𝑡 ∈ 〈−1; 1〉 in (3.48). One 

curvature grows faster with greater absolute value of 𝑡. This means that one main axis is more 

curved that the other. 

The approximated vector field represented by (3.48) can be seen for different 

values of parameter 𝑡 in Figure 3.12. It can be seen that the vector field has a different 

phase portrait for a different values 𝑡, however all of them have the same description 

using a linear approximation of the vector field around a critical point.  

 

𝑡 = 0 

 

𝑡 = 0.33 

 

𝑡 = 0.66 

 

𝑡 = 1 

Figure 3.12: Vector fields and their curvatures for different parameters 𝑡 in (3.48). The orange 

lines visualize the main axes of vector field obtained from the linear part of the approximation. 

The black lines visualize vectors of the curvature of the main axes (note, that they are 

perpendicular to the main orange axes). 
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Vector field around an attracting focus point 

An example of the vector field around an attracting focus point can be 

characterized with the following approximation 

𝑣𝑥 = [
−0.8
−1.3

]
𝑇

∙ [
∆𝑥
∆𝑦

] +
1

2
𝑡 [

∆𝑥
∆𝑦

]
𝑇

∙ [
−1.7 0.6
0.6 1.2

] ∙ [
∆𝑥
∆𝑦

] 

  

𝑣𝑦 = [
0.9

−1.1
]
𝑇

∙ [
∆𝑥
∆𝑦

] +
1

2
𝑡 [

∆𝑥
∆𝑦

]
𝑇

∙ [
0.7 0.45
0.45 0.95

] ∙ [
∆𝑥
∆𝑦

] , 

(3.50)

where 𝑡 ∈ ℝ is a parameter. 

In this case, the parameter 𝑡 ∈ 〈−1; 1〉 was changed and the curvature of the real 

part of the main axis of the vector field was calculated. It can be seen that the curvature 

changes continuously (see results in Figure 3.13). For parameter 𝑡 = 0 is the vector field 

approximated only with Jacobian matrix part of (3.50), i.e.  

𝑣𝑥 = [
−0.8
−1.3

]
𝑇

∙ [
∆𝑥
∆𝑦

] 

  

𝑣𝑦 = [
0.9

−1.1
]
𝑇

∙ [
∆𝑥
∆𝑦

] 

(3.51)

and the curvature is thus equal to 0. 

 

Figure 3.13: Progress of curvature when changing the parameter 𝑡 ∈ 〈−1; 1〉 in (3.50). 

The approximated vector field represented by (3.50) can be seen for different 

values of parameter 𝑡 in Figure 3.14. It can be seen that the vector field has a different 

phase portrait for a different values 𝑡, however all of them have the same description 

using a linear approximation of the vector field around a critical point. 
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𝑡 = 0 

 

𝑡 = 0.33 

 

𝑡 = 0.66 

 

𝑡 = 1 

Figure 3.14: Vector fields and their curvatures for different parameters 𝑡 in (3.50). The orange 

line visualizes the main axis of vector field, i.e. real part of the eigenvector obtained from the 

linear part of the approximation. The black line visualizes vector of the curvature of the main axis 

(note, that it is perpendicular to the main orange axis). 

Real Vector Field 

Calculation of vector field curvature was shown on synthetic datasets and can be 

calculated on real datasets as well. A wind dataset1 was chosen and only a small part from 

this dataset with only one critical point was selected, (see Figure 3.15). For this critical 

point, which is a saddle point, the vector field curvature of both main axes was calculated. 

One curvature is equal to 0.05128 and the second one is 0.00496. 

                                                 
1 US GFS global weather model. National Centers for Environmental Information (NCEI), 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs, 

[downloaded: 21.3.2016]. 
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Figure 3.15: Vector field and its curvature. The orange lines visualize the main axes of the vector 

field obtained from the linear part of the approximation. The black lines visualize vectors of the 

curvature of the main axes (note that they are perpendicular to the main orange axes). 

It can be seen that one main axis has a greater curvature than the other one, as this 

main axis has the shape of a quadratic curve, and the second axis has the shape of a linear 

or cubic curve (a cubic curve has zero curvature at its inflection point). The curvature 

vector of the main axis with greater curvature (the vertical main axis) is pointing to the 

right and thus this axis is curved to the right side as well. 

3.4.3 Classification using description of conic sections 

Each vector field can be approximated at a critical point with the approximation 

that uses the second order derivatives, i.e. Hessian matrix. One such example of 

approximated vector field around a critical point 𝒙0 = [0, 0]𝑇 can be 

𝑣𝑥 =
1

2
[∆𝑥 ∆𝑦 1] ∙ [

−1 1 1
1 −1 2
1 2 0

] ∙ [
∆𝑥
∆𝑦
1

] , (3.52)

𝑣𝑦 =
1

2
[∆𝑥 ∆𝑦 1] ∙ [

0 0 −1
0 0 1.5

−1 1.5 0
] ∙ [

∆𝑥
∆𝑦
1

] . (3.53)

Equation (3.52) represents for 𝑣𝑥 = 0 a parabola and (3.53) for 𝑣𝑦 = 0 a line. This 

approximated vector field can be seen in Figure 3.16. 
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Figure 3.16:  Vector field approximated as (3.52) and (3.53). The zero iso-lines are a line and a 

parabola. 

Now, we showed conic sections that have only one intersection point at [0, 0]𝑇. 

Two conic sections can have up to four intersections. Each intersection defines a critical 

point. Therefore, we can approximate a vector field around one critical point and some 

more critical points in the neighborhood will be included in this approximation. 

Vector fields around a focus critical point can be for some real vector field 

approximated for example as 

𝑣𝑥 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
1 −3 1

−3 1 2
1 2 0

] ∙ [
∆𝑥
∆𝑦
1

] 𝑣𝑦 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
0 0 −1
0 0 1.5

−1 1.5 0
] ∙ [

∆𝑥
∆𝑦
1

] (3.54)

𝑣𝑥 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
−0.5 0.5 1
0.5 −0.5 2
1 2 0

] ∙ [
∆𝑥
∆𝑦
1

] 𝑣𝑦 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
−1 1 −1
1 −1 1.5

−1 1.5 0
] ∙ [

∆𝑥
∆𝑦
1

] (3.55)

This both approximations of vector fields describe behaviour around a focus 

critical point at [0, 0]𝑇. Both of them contain one more critical point, which is a saddle 

critical point. These saddle critical points do not have to be real critical points of the 

approximated vector field, but they can be present in the vector field. Therefore, this 

approximation can give us some information about other possible critical points in the 

neighbourhood of approximated critical point 𝒙0. When locating all critical points in the 

vector field, we can use this information to increase the probability of finding all critical 

points. 
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Figure 3.17:  Vector field approximated as (3.54) (left) and (3.55) (right). The zero iso-lines are 

a line and a hyperbola (left), or two parabolas (right). 

The maximal number of two conic sections intersection points is four. In the next 

example, we will show it. Let us have a vector field, which can be approximated at point 

𝒙0 for example as 

𝑣𝑥 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
−0.25 0 1

0 −1 2
1 2 0

] ∙ [
∆𝑥
∆𝑦
1

] 𝑣𝑦 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
−1 1 −1
1 −1 1.5

−1 1.5 0
] ∙ [

∆𝑥
∆𝑦
1

] (3.56)

𝑣𝑥 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
1 1 1
1 2 2
1 2 0

] ∙ [
∆𝑥
∆𝑦
1

] 𝑣𝑦 =
1

2
[
∆𝑥
∆𝑦
1

]

𝑇

∙ [
1 −1 −1

−1 1.5 1.5
−1 1.5 0

] ∙ [
∆𝑥
∆𝑦
1

] (3.57)
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Figure 3.18:  Vector field approximated as (3.56) (left) and (3.57) (right). The zero iso-lines are 

a parabola and an ellipse (left), or two ellipses (right). 

These two approximations (3.56) and (3.57) of vector fields are visualized in 

Figure 3.18. It can be seen, that each approximation contains four critical points, i.e. one 

critical point where the vector field was approximated and three more critical points. 

We showed the geometrical properties of vector field approximation using the 

second order derivatives, i.e. Hessian matrix. This approximation can be rewritten in a 

matrix form of a conic section formula. We presented, that approximation using Hessian 

matrix, rather than only Jacobian matrix, gives us more detailed description of vector field 

and can help us when locating critical points in a vector field. 

3.5 Vector field topology 

Vector field topology was introduced to the visualization community by Helman 

and Hesselink [Hel89]. They defined the concept of a topological skeleton consisting of 

critical points and connecting separatrices to segment the field into regions of 

topologically equivalent streamline behaviour. Algorithms to extract periodic orbits, 

completing this topological structure, were proposed in [The04], [Che07]. A good 

introduction to the concepts and algorithms of vector field topology is given in [Wei08]. 

We can think of flow topology in terms of surfaces (in case of 3𝐷 domains) or 

curves (in case of 2𝐷 domains) that divide the flow into separate regions. Two sets of 

surfaces or lines are of particular interest: 

 Tangent surfaces that actually intersect the wall of a body where the flow attaches 

to or separates from that wall. Tangent curves on either side are deflected, moving 

along the surface of the body. 

 Surfaces where tangent curves start arbitrarily close to each other can end up in 

substantially different regions.  
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Topological concepts are very powerful because, given the critical points in a 

vector field and the tangent curves or surfaces connecting them, you can infer the shape 

of other tangent curves and hence to some extent the structure of the entire vector field. 

To improve the applicability of vector field topology, a variety of extensions like 

topology tracking, extraction of boundary topology, or extensions to 3𝐷 have been 

developed. As the topological skeleton of real world data sets is usually rather complex, 

a lot of work has been done towards simplification of topological skeletons of vector 

fields. Lodha et al. [Lod00], [Lod03] introduced a compression technique for 2𝐷 vector 

fields which prohibits strong changes of location and Jacobian matrix of the critical 

points. Theisel et al. [The03] presented an approach which guarantees that the topology 

of original and compressed vector field coincides both for critical points and for the 

connectivity of the separatrices. It is shown that even under these strong conditions high 

compression ratios for vector fields with complex topologies are achieved. [Agr15] 

subsample the velocity data and introduce a novel technique for informed selection of 

subsamples. Furthermore, they explore an adaptive system which exchanges the 

subsampling budget over parallel tasks, to ensure that subsampling occurs at the highest 

rate in the areas that need it most.  

[Koch15] presented a vector field approximation for 2𝐷 vector fields that 

preserves their topology and significantly reduces the memory footprint. This 

approximation is based on a segmentation. The flow within each segmentation region is 

approximated by an affine linear function. The implementation is driven by following 

aims: the approximation preserves the original topology, the maximal approximation 

error is below a user-defined threshold in all regions, the number of regions is as small as 

possible and each point has the minimal approximation error. The generation of an 

optimal solution is computationally infeasible, so they provide a greedy strategy to 

efficiently compute a sensible segmentation that considers the presented aims. Finally, 

they use the region-wise affine linear approximation to compute a simplified grid for the 

vector field.  

Simplifying vector fields via critical point cancellation has practical merit for 

interpreting the behaviours of complex vector fields such as turbulence. [Skr16] 

introduces the approach to directly cancel pairs or groups of 3D critical points in a 

hierarchical manner with a guaranteed minimum amount of perturbation based on their 

robustness, a quantitative measure of their stability. In addition, the algorithm does not 

require the extraction of the entire 3D topology, which contains non-trivial separation 

structures, and thus is computationally effective. Furthermore, the algorithm can remove 

critical points in any sub-region of the domain whose degree is zero and can handle 

complex boundary configurations. For more simplification algorithms see for example 

[Tri01], [Wei05].  

Scalar field topology was developed almost independently from vector field 

topology. The main application areas in visualization include segmentation, transfer 
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function design, and ridge extraction. Due to their robustness and stability, combinatorial 

extraction algorithms have been especially successful in this context [Gyu06], [Lew04]. 

To reduce the often very complex topological structure that is generated by these 

algorithms, a controlled simplification is introduced based on the mathematically 

well-founded concept of persistence in [Ede08]. Due to the simplicity and clarity of this 

simplification strategy, it has been widely adopted. Most of the above-mentioned 

extraction algorithms make use of Forman’s work [For01] on a discrete scalar field 

topology for cell complexes. Rather than choosing a suitable class of continuous 

functions, a single number is assigned to each cell of the complex and all further steps are 

combinatorial. 
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4 Meshless interpolation and approximation 

Interpolation and approximation are probably the most frequent operations used 

in computational techniques. Several techniques have been developed for data 

interpolation, but they expect some kind of data “ordering”, e.g. structured mesh, 

rectangular mesh, unstructured mesh etc. The typical example is a solution of partial 

differential equations (PDE) where derivatives are replaced by differences and 

rectangular or hexagonal meshes are used in the vast majority of cases. However in many 

engineering problems, data are not ordered and they are scattered in 𝑘-dimensional space, 

in general. Usually, in technical applications the scattered data are tessellated using 

triangulation but this approach is quite prohibitive for the case of 𝑘-dimensional data 

interpolation because of the computational cost. 

4.1 Radial Basis Function 

Radial basis function (RBF) is a technique for scattered data interpolation and 

approximation [Fas07], [Ska15]. RBF interpolation and approximation is 

computationally more expensive, because input data are not ordered and there is no 

known relation between them. However RBF has higher computational cost, it can be 

used for many applications, e.g. solution of partial differential equations, image 

reconstruction, neural networks, fuzzy systems, GIS systems, optics etc.  

RBFs are the natural generalization of univariate polynomial splines to a 

multivariate setting. The main advantage of this type of approximation is that it works for 

arbitrary geometry with high dimensions and it does not require a mesh at all. A RBF is 

a function whose value depends only on the distance from some center point. Using 

distance functions, RBFs can be easily implemented to reconstruct a plane or surface 

using scattered data in 2𝐷, 3𝐷 or higher dimensional spaces. Due to the uses of the 

distance functions, the RBFs can be easily implemented to reconstruct the surface using 

scattered data in 2𝐷, 3𝐷 or higher dimensional spaces. 

Application of RBF to the solution of the scattered data interpolation or 

approximation problem benefits from the fact that RBF is insensitive to the dimension 𝑘 

of the data space. Instead of dealing with a multivariate function, whose complexity will 

increase with the dimension 𝑘, it can be used the same univariate function 𝜑 for any 

choice of 𝑘. 

RBF calculation can be used with many basis function. One such example is a 

well-known Gaussian radial basis function 

 φ(𝑟) = 𝑒−(𝜀𝑟 )2  , (4.1) 

where 𝑟 ∈ ℝ. The shape parameter 𝜀 is related to the variance 𝜎2 of the normal 

distribution function by 𝜀2 = 1/(2𝜎2). If the Gaussian is composed with Euclidean 

distance function, one obtain for any fixed center point 𝒙𝑘 a multivariate function 
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 Φ(𝒙) = 𝑒−(𝜀‖𝒙−𝒙𝑘‖ )2  . (4.2) 

The connection between (4.1) and (4.2) is given by 

 Φ(𝒙) = φ(‖𝒙 − 𝒙𝑘‖) . (4.3) 

Radial function interpolants have the nice property of being invariant under all 

Euclidean transformations, i.e. translations, rotations and reflections. By this it means that 

it does not matter whether we first compute the RBF interpolation function and then apply 

a Euclidean transformation, or if we first transform all the data and then compute the 

radial function interpolants. This result of the fact that Euclidian transformations are 

characterized by orthogonal transformation matrices and are therefore 2-norm invariant.  

Radial basis functions can be divided into two groups according their influence. 

First group are “global” RBF, for example: 

 Thin-Plate Spline (TPS) φ(𝑟) = 𝑟2 log 𝑟 

(4.4) 

Gauss function φ(𝑟) = 𝑒−(𝜀𝑟 )2 

Inverse Quadric (IQ) φ(𝑟) =
1

1 + (𝜀𝑟 )2
 

Inverse Multiquadric (IMQ) φ(𝑟) =
1

√1 + (𝜀𝑟 )2
 

Multiquadric (MQ) φ(𝑟) = √1 + (𝜀𝑟 )2 

The “local” RBF were introduced by [Wen95] as Compactly Supported RBF (CSRBF) 

and satisfy the following condition 

 
φ(𝑟) = {

(1 − 𝑟)𝑞 ∙ 𝑃(𝑟) 0 ≤ 𝑟 ≤ 1
0 𝑟 > 1

 , (4.5) 

where 𝑃(𝑟) is a polynomial function and 𝑞 is a parameter. Typical examples of CSRBF are 

 φ1(𝑟) = (1 − 𝑟)+ 

φ2(𝑟) = (1 − 𝑟)+
3 (3𝑟 + 1) 

φ3(𝑟) = (1 − 𝑟)+
5 (8𝑟2 + 5𝑟 + 1) 

φ4(𝑟) = (1 − 𝑟)+
2  

φ5(𝑟) = (1 − 𝑟)+
4 (4𝑟 + 1) 

φ6(𝑟) = (1 − 𝑟)+
6 (35𝑟2 + 18𝑟 + 3) 

φ7(𝑟) = (1 − 𝑟)+
8 (32𝑟3 + 25𝑟2 + 8𝑟 + 1) 

φ8(𝑟) = (1 − 𝑟)+
3  

φ9(𝑟) = (1 − 𝑟)+
3 (5𝑟 + 1) 

φ10(𝑟) = (1 − 𝑟)+
7 (16𝑟2 + 7𝑟 + 1) 

(4.6) 
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Visualisation of CSRBF in (4.6) can be seen in Figure 4.1 and it should be noticed that 

the function value of all CSRBF for 𝑟 = 1 is equal 0. 

 

Figure 4.1: Examples of CSRBF from equation (4.6) (from [Uhl06]). 

4.2 Radial Basis Function interpolation 

The RBF interpolation was originally introduced by [Har71], is based on 

computing of the distance of two points in the 𝑘-dimensional space and is defined by 

a function 

 

𝑓(𝒙) = ∑𝜆𝑗  𝜑(‖𝒙 − 𝒙𝑗‖)

𝑀

𝑗=1

 , (4.7) 

where 𝜆𝑗 are weights of RBF, 𝑀 is number of radial basis functions, i.e. number of 

interpolation points, and 𝜑 is the radial basis function. For a given dataset of points with 

associated values, i.e. {𝒙𝑖, ℎ𝑖}1
𝑀, the following linear system of equations is obtained 

 

ℎ𝑖 = 𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

          for ∀𝑖 ∈ {1, … ,𝑀} , (4.8) 

where 𝜆𝑗 are weights to be computed, see Figure 4.2 for visual interpretation of (4.7) or 

(4.8) for a 2½𝐷 function.  
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a) 

 
b) 

 
c) 

Figure 4.2: Data values {ℎ𝑖}𝑖=1
𝑀  (a), the RBF collocation functions (b), the resulting 

interpolant (c) (from [Fly09]). 

Due to stability reasons [Wri03] added a polynomial 𝑃𝑝(𝒙) of a degree 𝑝 to the 

form for RBF interpolation, i.e. 

 

ℎ𝑖 = 𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

+ 𝑃𝑝(𝒙𝑖)          for ∀𝑖 ∈ {1,… ,𝑀} , (4.9) 

where 𝑃𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2+. . . +𝑎𝑝𝑥

𝑝 is a 𝑝 degree polynomial function (for 1&½ 

dimensional case) with unknown coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑝]
𝑇
. We can rewrite 

(4.9) as 

 

[
𝜑(‖𝒙1 − 𝒙1‖) ⋯ 𝜑(‖𝒙1 − 𝒙𝑀‖) 1 𝑥1 ⋯ 𝑥1

𝑝

⋮    ⋮ ⋮ ⋮    ⋮
𝜑(‖𝒙𝑀 − 𝒙1‖) ⋯ 𝜑(‖𝒙𝑀 − 𝒙𝑀‖) 1 𝑥𝑀 ⋯ 𝑥𝑀

𝑝
]  ∙

[
 
 
 
 
 
𝜆1

⋮
𝜆𝑀

𝑎0

⋮
𝑎𝑝 ]

 
 
 
 
 

= [
𝑓(𝒙1)

⋮
𝑓(𝒙𝑀)

] . (4.10) 
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It can be seen from (4.10) that the system of linear equations has 𝑀 equations with 

(𝑀 + 𝑝 + 1) unknowns. For this reason [Wri03] formulated (𝑝 + 1) additional 

conditions to be fulfilled 

 

∑𝜆𝑗

𝑀

𝑗=1

(𝑥𝑗)
𝑖
= 0          for ∀𝑖 ∈ {0,… , 𝑝} . (4.11) 

Adding (4.11) to (4.10) we get the following system of linear equations 

 

[
 
 
 
 
 
 
 
𝜑(‖𝒙1 − 𝒙1‖) ⋯ 𝜑(‖𝒙1 − 𝒙𝑀‖) 1 𝑥1 ⋯ 𝑥1

𝑝

⋮    ⋮ ⋮ ⋮    ⋮
𝜑(‖𝒙𝑀 − 𝒙1‖) ⋯ 𝜑(‖𝒙𝑀 − 𝒙𝑀‖) 1 𝑥𝑀 ⋯ 𝑥𝑀

𝑝

1 ⋯ 1 0 0 ⋯ 0
𝑥1 ⋯ 𝑥𝑀 0 0 ⋯ 0
⋮  ⋮ ⋮ ⋮  ⋮

𝑥1
𝑝

⋯ 𝑥𝑀
𝑝

0 0 ⋯ 0 ]
 
 
 
 
 
 
 

 ∙

[
 
 
 
 
 
𝜆1

⋮
𝜆𝑀

𝑎0

⋮
𝑎𝑝 ]

 
 
 
 
 

=

[
 
 
 
 
 
𝑓(𝒙1)

⋮
𝑓(𝒙𝑀)

0
⋮
0 ]

 
 
 
 
 

 . (4.12) 

System of linear equations (4.12) has (𝑀 + 𝑝 + 1) equations with (𝑀 + 𝑝 + 1) 

unknowns and can be rewritten using matrix notation as 

 
[
𝑩 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
]           𝑨𝒙 = 𝒃 . (4.13) 

Matrix 𝑩 is symmetrical, as ‖𝒙𝑖 − 𝒙𝑗‖ = ‖𝒙𝑗 − 𝒙𝑖‖, and thus the matrix 𝑨 is symmetrical 

as well. 

RBF interpolation can be done using “global” or “local” functions. When using 

“global” radial basis functions the matrix 𝑩 will be full, but when using local radial basis 

functions the matrix 𝑩 will be sparse, which can be beneficial when solving the system 

of linear equations 𝑨𝒙 = 𝒃. 

4.3 Radial Basis Function approximation 

Radial basis function interpolation computes the system of linear equations 

𝑨𝒙 = 𝒃, where 𝑨 is a square matrix. In some cases it is necessary to approximate the input 

data, i.e. for noisy data, oversampled data etc. When approximating the data, the RBF 

formulation is 

 

ℎ𝑖 = 𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝝃𝑗‖)

𝑀

𝑗=1

+ 𝑃𝑝(𝒙𝑖)          for ∀𝑖 ∈ {1,… ,𝑀} , (4.14) 

where 𝝃𝑗 are not given points, but can be freely defined as only coordinates are needed. 

This reference points can form any distribution of points, e.g. points can form a regular 

grid in 2𝐷, see Figure 4.3. 
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Figure 4.3: Example of reference points forming a regular grid in 2𝐷 (from [Ska13]). 

The system of linear equations 𝑨𝒙 = 𝒃 is overdetermined, when the number of 

given points is larger than the number of new reference points. The approximation is done 

using a method of least square error. The error is computer using  

 

𝑟𝑖 = 𝑓(𝒙𝑖) − (∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝝃𝑗‖)

𝑀

𝑗=1

+ 𝑃𝑝(𝒙𝑖))           for ∀𝑖 ∈ {1,… ,𝑀} (4.15) 

and using matrix notation 

 𝒓 = 𝒃 − 𝑨𝒙 . (4.16) 

The square of error 𝒓 is calculated as 

 𝑟2 = (𝒃 − 𝑨𝒙)𝑇(𝒃 − 𝑨𝒙) = 𝒃𝑇𝒃 − (𝑨𝒙)𝑇(𝑨𝒙) − (𝑨𝒙)𝑇𝒃 + 𝒃𝑇𝑨𝒙 . (4.17) 

To find an extreme, the following condition must be valid 

 𝜕𝑟2

𝜕𝒙
= 2𝑨𝑇𝑨𝒙 − 2𝑨𝑇𝒃 = 0 , (4.18) 

and thus the following system of linear equations has to be solved 

 𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 . (4.19) 

The matrix 𝑨𝑇𝑨 is squared and symmetric positively semi-definite matrix. 

4.4 Vector field RBF interpolation 

Vector fields are results of numerical simulations or data measuring process. This 

kind of vector field data has discrete representation, but an analytical formula describing 

the vector filed is much more useful. We will show our approach [Smo16a] how to 

interpolate a vector field using radial basis functions. 
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A very important future of a vector field are its critical points. The interpolation 

must preserve positions and types of all critical points. Thus, the RBF interpolation should 

interpolate the vector field at all positions of critical points to preserve their positions. To 

preserve their types, we should include few more points in the neighborhood of each 

critical point to the interpolation. The number of points in the neighborhood was 

experimentally chosen to be 4, as more points does not improve the interpolation in any 

significant way. Points in the neighborhood of a critical point 𝒙0 = [𝑥0, 𝑦0] 
𝑇 are chosen 

using the following formula 

 

[
𝑃𝑥

(𝑘)

𝑃𝑦
(𝑘)] = [

𝑥0 + 𝑟 sin (𝑘
𝜋

2
 )

𝑦0 + 𝑟 cos (𝑘
𝜋

2
 )

] , (4.20) 

where 𝑘 ∈ {0, 1, 2, 3} and 𝑟 is a small number depending on the distance of critical points, 

where the distance to the nearest critical point should be ≫ 𝑟. 

This set of critical points together with their neighborhood points can be 

interpolated using RBF (4.7), note that each component of vectors 𝒗 = [𝑣𝑥, 𝑣𝑦]
𝑇
 is 

interpolated separately. This interpolation will preserve the location of critical points 

together with their types.  

To get more accurate interpolation formula of a vector field at points 𝑥 ∈

 [𝑥{𝑚𝑖𝑛}, 𝑥{𝑚𝑎𝑥}] × [𝑦{𝑚𝑖𝑛}, 𝑦{𝑚𝑎𝑥}] we can include some more random points from this 

interval into the interpolation. The improvement of quality depending on the number of 

additionally included points will be shown in the following chapter. 

4.4.1 Results using synthetic data 

The results will be demonstrated on an analytical vector field, as we can measure 

the interpolation errors precisely. The analytical vector field, which we choose as an 

example, is described with the following equation 

 

[

𝑣𝑥

𝑣𝑦

] = [
𝑥 (

1

2
𝑥2 +

1

2
) + 𝑦 (−𝑥 + (

1

2
𝑦 − 1)𝑦 +

1

2
)

1

2
𝑥2𝑦 + 𝑥 (−

1

2
𝑦2 + 𝑦 −

1

2
) +

1

2
𝑦 − 1

] , (4.21) 

this vector field (4.21) has three critical points 𝒙0 

 source location: 𝒙0 = [−1, 1]𝑇

source location: 𝒙0 = [1, 1]𝑇

saddle location: 𝒙0 = [0.543689, 1.83929]𝑇 .

 (4.22) 

The vector field (4.21) will be interpolated and tested on interval [−2, 2] ×

[−1, 3], as all important features will be visible. The RBF function used for interpolation 
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is a Gauss radial basis function and the shape parameter 𝜀 was experimentally selected as 

𝜀 = 1. 

Vector field (4.21) can be interpolated using 3 critical point positions and 12 more 

neighborhood points, i.e. 4 neighborhood points for each critical point. The neighborhood 

points are computed with (4.20) and the parameter 𝑟 = 0.1. The 𝑣𝑥 component of the 

vector field is interpolated with one RBF and the 𝑣𝑦 component of the vector field is 

interpolated with one RBF as well. The phase portrait of original analytical vector field 

(4.21) is visualized in Figure 4.4a and the phase portrait of RBF interpolated vector field 

is visualized in Figure 4.4b. It can be seen, that both phase portraits look very similar and 

have the same vector field topology. Moreover, the critical points location is identical, as 

the average length of displacement error for all critical points is 7.0283 ⋅ 10−8, which is 

only a numerical error of the critical points location algorithm. 

 
a) 

 
b) 

Figure 4.4: Phase portrait of the vector field (4.21) (a) and phase portrait of a RBF interpolation 

using only 15 reference points (3 critical points plus three times 4 neighbourhood points) (b). 

We computed the interpolation error for 𝑣𝑥 and 𝑣𝑦 and visualized it in Figure 4.5. 

It can be seen that the interpolation error is getting higher as the distance from critical 

points increases. The average error of vector length at interval [−2, 2] × [−1, 3] is 

1.7943 (the vector length varies from 0 to 12.6194) and the average error of vector 

angular displacement is 0.1966 [𝑟𝑎𝑑]. 
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a) 

 
b) 

Figure 4.5: Interpolation error of RBF interpolation using only 15 reference points (3 critical 

points plus three times 4 neighbourhood points). Interpolation error of 𝑣𝑥 (a) and interpolation 

error of 𝑣𝑦 (b). 

The vector field (4.21) was interpolated using 3 critical points locations plus three 

times 4 neighborhood points. We can include few more randomly distributed points into 

the interpolation to reduce the distance error from (4.21). We choose to generate 

additional 85 points from interval [−2, 2] × [−1, 3], so the interpolation of vector field 

will contain 102 points in total. This interpolation of vector field is visualized in a phase 

portrait, see Figure 4.6 and Figure 4.4a for comparison with original phase portrait. 

 

Figure 4.6: Phase portrait of a vector field RBF interpolation of (4.21) using 100 reference points 

(3 critical points plus three times 4 neighbourhood points plus 85 randomly distributed points). 

We computed the interpolation error for 𝑣_𝑥 and 𝑣𝑦 and visualized it in Figure 

4.7. It can be seen that the interpolation error is close to zero except for locations on the 

border. The average error of vector length at interval [−2, 2] × [−1, 3] is 0.0549 (note 
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that the vector length varies from 0 to 12.6194) and the average error of vector angular 

displacement is 0.0065 [𝑟𝑎𝑑]. 

 
a) 

 
b) 

Figure 4.7: Interpolation error of RBF interpolation using 100 reference points (3 critical points 

plus three times 4 neighbourhood points plus 85 randomly distributed points). Interpolation error 

of 𝑣𝑥 (a) and interpolation error of 𝑣𝑦 (b). 

The average vector length error and the average vector angular displacement error 

were measured for different number of interpolated points. A number of points 𝑘 is used 

as added points for the RBF interpolation, thus the RBF interpolation uses (𝑘 + 3 + 3 ⋅

4) points for interpolation of vector field, i.e. 𝑘 randomly distributed points from interval 

[−2, 2] × [−1, 3] plus 3 critical points plus three times 4 neighborhood points. Number 

𝑘 was tested from 0 to 400 fifty times for each 𝑘 with step Δ𝑘 = 1 and results are 

visualized in Figure 4.8. 

 
a) 

 
b) 

Figure 4.8: Average errors of the RBF interpolation of vector field (4.21) using 𝑘 added reference 

points, i.e. 3 critical points plus three times 4 neighbourhood points plus 𝑘 randomly distributed 

points, where 𝑘 ∈ {0,… , 400}. The vector field length error, note that the vector length varies 

from 0 to 12.6194 (a) and the vector field angular displacement error (b). 
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It can be seen that both errors in Figure 4.8 decrease with increasing number 𝑘 of 

added points for the interpolation of vector field. According to the required accuracy of 

the interpolation, the user can select the minimal necessary number of added points and 

perform the interpolation according to the algorithm proposed. 

We presented a new and easy to implement approach for the vector field 

interpolation using radial basis functions. In general, it can be used in any $d-

$dimensional space, although the results were presented only for 2𝐷 vector field. The 

proposed RBF interpolation proved the ability to interpolate a vector field when 

preserving the location of critical points and the vector field topology as well.  

The proposed approach offers not only analytical description of the discrete data 

of vector field, but also a significant data compression. This might be a significant feature 

for “progressive vector field visualization” approach.  

4.4.2 Results using data from simulation 

We tested our interpolation technique on data obtained from numerical simulation 

as well. This data were computed on an irregular tetrahedral mesh as Newtonian flow (see 

Figure 4.9)1. This dataset contains 50 052 positions, 274 498 tetrahedrons and 50 052 

vectors at each time step of simulation representing the blood flow in a simple coronary 

bypass.  

 

Figure 4.9: Phase portrait of a vector field RBF interpolation of (4.21) using 100 reference points 

(3 critical points plus three times 4 neighbourhood points plus 85 randomly distributed points). 

For the illustration we selected a longitudinal cut of the dataset, which is exactly 

in the middle of the dataset, i.e. the 𝑧 coordinate is equal 0. Note, that we are using only 

one cut of the dataset, thus the vector field and the new dataset becomes a two dimensional 

problem.  For this cut we used a linear interpolation to compute the phase portrait of the 

vector field. The results can be seen in Figure 4.10 (right). 

                                                 
1 Author of the dataset is Ing. Alena Jonášová, Ph.D. from KME ZČU in Pilsen. 
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For the vector field RBF approximation we located the two critical points at the 

places of connection of the bypass. These two locations were used as points for RBF 

interpolation. Together with them were used 4 more surroundings points for each critical 

point. Using only these points is insufficient and thus we added additional 290 points for 

the RBF interpolation. These added points are located inside the new dataset, i.e. in the 

cut. For the RBF approximation we used 

 φ(𝑟) = (1 − 𝑟)+
7 (16𝑟2 + 7𝑟 + 1) (4.23) 

as the radial basis function. The results of our vector field RBF approximation method 

are in Figure 4.10 (left).  

RBF approximation Original vector field 

a) Simulation result 

 

 

b) Simulation result 

 

 

Figure 4.10: Phase portraits of vector fields as result of numerical simulation in different time 

steps. Phase portraits of vector fields RBF approximation (left) and phase portraits of vector fields 

created using linear interpolation on tetrahedral mesh (right).  The RBF interpolation uses 300 

reference points (2 critical points plus two times 4 neighbourhood points plus 290 randomly 

distributed points). 

According to the results from Figure 4.10, it can be seen that the RBF 

approximation of a cut of vector field is very similar to the original vector field. However 
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there are some issues on the border and especially on the corners of the dataset. To solve 

this problem we added more special points for the RBF interpolation on the edges and 

corners as well. The results of this vector field RBF approximation can be seen in Figure 

4.11. 

RBF interpolation 
RBF interpolation with 

added border points 
Original vector field 

   

   

Figure 4.11: Phase portraits of vector fields as result of numerical simulation in different time 

steps. Phase portraits of vector fields RBF approximation (left), phase portraits of vector fields 

RBF approximation with added border points (middle) and phase portraits of vector fields created 

using linear interpolation on tetrahedral mesh (right).  The RBF interpolation uses 300 reference 

points (2 critical points plus two times 4 neighbourhood points plus 290 randomly distributed 

points). The RBF interpolation with added border points uses 300 reference points (2 critical 

points plus two times 4 neighbourhood points plus 30 points distributed on the border plus 260 

randomly distributed points). 

According to the results in Figure 4.11, it can be seen that the RBF interpolation 

with added border points gives much better results than the RBF interpolation without 

extra added border points. Still, there are some problems with the RBF vector field 

approximation, especially close to the corners.   

4.5 Vector field RBF interpolation on a sphere 

The radial basis function interpolation can be computed on a sphere and has some 

advantages [Bax01], [Hub15]. We presents our approach published in [Smo16b]. There 

are any unphysical boundaries and there are no problems with interpolation on the poles, 

i.e. the sphere has no boundaries, and the vector field can be interpolated on the whole 

sphere surface at once compared to using only spherical coordinates and interpolation in 

2𝐷. The other advantage is that there are no coordinate singularities and the maximal 
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distance of any two points has an upper bound and the RBF interpolation does not need 

any mesh, i.e. triangulation, for interpolation.  

The RBF interpolation interpolates scalar values on a sphere. However the vector 

field is not a scalar field, the RBF interpolation can be used for vector fields as well. For 

each component of the vector, we need to compute one RBF interpolation separately but 

it should be noted that the interpolation matrices for all component of the vector are the 

same. 

The calculation of the distance 𝑟 between two points 𝒙1 and 𝒙2 on a sphere can 

be computed as the Euclidian distance between this two points  

𝑟 = ‖𝒙1 − 𝒙2‖𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 
    

= √(𝒙1 − 𝒙2)𝑇 ∙ (𝒙1 − 𝒙2) . 
(4.24) 

In the case that both points lie on a unit sphere then 𝑟 ∈ 〈0; 2〉. 

Or the distance can be computed as the shortest distance between two points 𝒙1 

and 𝒙2 on the surface of a sphere, measured along the surface of the sphere. The distance 

is computed using  

 𝑟 = ‖𝒙1 − 𝒙2‖𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = cos−1(𝒏1 ∙ 𝒏2) , (4.25) 

where 𝑟 ∈ 〈0; 𝜋〉 and 

 𝒏1 =
𝒙1

‖𝒙1‖
 𝒏2 =

𝒙2

‖𝒙2‖
 (4.26) 

The distance 𝑟 in (4.25) is measured in radians. In the case that the sphere has 

radius equal to one, the computed distance in radians is equal to the distance measured 

along the surface of the sphere. 

The RBF interpolation on a sphere is computed using the same formula as 

standard RBF. The only difference compared to standard equation for RBF interpolation 

is when computing the distance between two points as both mentioned approaches can be 

used. 

4.5.1 Example of Vector Field on Sphere on Synthetic data 

An example of a vector field on sphere can be described analytically. This 

analytical description must fulfil one criteria, which is that this function is continues all 

over the sphere. For this purpose we can use goniometric functions that have the period 

equal to 2𝜋, i.e. 

 sin 𝛼 = sin(𝛼 + 𝑘 ∙ 2𝜋) cos 𝛼 = cos(𝛼 + 𝑘 ∙ 2𝜋) , (4.27) 

where 𝑘 is an integer, i.e. 𝑘 ∈ ℤ. 
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The first example of a vector field on a sphere is described using the following 

equation 

 
[
𝑢
𝑣
] = [

sin 4𝛿
cos 4𝜃

]  [
𝑢
𝑣
] = [

sin 3𝛿 + cos 4𝛿 ∙ cos 3𝛿
cos 4𝜃 − sin 4𝜃 ∙ sin 3𝛿

] . (4.28) 

where 𝛿 is an azimuth angle, i.e. 𝛿 ∈ (−𝜋; 𝜋⟩ and 𝜃 is a zenith angle, i.e. 𝜃 ∈ 〈0; 𝜋〉. Data 

[𝑢, 𝑣]𝑇 represents the direction vector on the surface of sphere at point [𝑃𝑥, 𝑃𝑦, 𝑃𝑧]
𝑇
 

  

[

𝑃𝑥

𝑃𝑦

𝑃𝑧

]

𝑇

= [
sin 𝜃 cos 𝛿
sin 𝜃 sin 𝛿

cos 𝜃
]

𝑇

 (4.29) 

The vector fields (4.28) were discretized on uniformly distributed 10 000 points 

on a sphere and then interpolated using RBF on sphere with CSRBF with shape parameter 

equal to 1 

 φ(𝑟) = (1 − 𝑟)+
4 (4𝑟 + 1) . (4.30) 

The interpolation, when using spherical distance (4.25) to compute the distance 𝑟 

for basis function φ(𝑟), can be seen in Figure 4.12. This visualization was created with 

ray-tracing and line integral convolution (LIC) on sphere. 

 

a) 

 

b) 

Figure 4.12: Visualization of examples of vector fields. All vector fields were interpolated using 

RBF and visualized as LIC images on sphere. Equation (4.28) left (a) and (4.28) right (b). In both 

images are clearly seen sources, resp. sinks, and saddles. Both images are visually identical to the 

ones with original analytical description. 
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To measure the quality of interpolation, we can compute the mean error of speed 

and the mean error of angular displacement of vectors. The mean errors were computed 

for 106 randomly generated positions on a sphere. The results for both equations (4.28) 

and both ways of calculating the distance between two points can be seen in Figure 4.12. 

Note that both vectors [𝑢, 𝑣]𝑇 in (4.28) are computed in [𝑚𝑠−1].  

Table 4.1:  Errors of RBF interpolated vector fields (4.28) on a sphere for both ways of computing 

distance between two points.  

  
Speed error 

[𝑚𝑠−1] 

Angular displacement 

error [𝑟𝑎𝑑] 

Euclidian distance 
  vector field (4.28) left 2.452 ∙ 10−4 4.233 ∙ 10−4 

  vector field (4.28) right 1.884 ∙ 10−3 2.672 ∙ 10−3 

Spherical distance 
  vector field (4.28) left 1.686 ∙ 10−4 3.074 ∙ 10−4 

  vector field (4.28) right 1.379 ∙ 10−3 1.906 ∙ 10−3 
 

It can be seen that the RBF interpolation when using spherical distance gives for 

both vector fields better results, i.e. more accurate speed and more accurate orientation at 

every location on the sphere in average, see Table 4.1. The RBF interpolation is less 

accurate for vector field (4.28) right) than for vector field (4.28) left). The reason is that 

the vector field (4.28) right) is significantly more complicated than (4.28) left). The 

distribution of speed errors and angular displacement errors is visualized in Figure 4.13. 

Histograms were created from 106 samples and data were grouped into 71 bins. 

  

Figure 4.13: Histogram of speed error distribution (a) and displacement error distribution (b) for 

vector field (4.28) left. 

The RBF interpolation performs slightly better interpolation results when using 

spherical distance (4.25) compared to the RBF with the Euclidian distance calculation 

(4.24). For this reason we use only the spherical distance calculation for all our tests. 

We computed the RBF interpolation on a sphere of the original vector field (4.28) 

left using 103, 5 ∙ 103 and 104 sampling points for different shape parameters in radial 

basis function  

 φ(𝑟) = {
(1 − 𝜀𝑟)+

4 (4𝜀𝑟 + 1)      𝜀𝑟 ≤ 1
0      𝜀𝑟 > 1

  (4.31) 

and measured the average vector length error and the average angular displacement error 

of interpolated vectors. The shape parameter 𝜀 cannot be less than 1 𝜋⁄ , as the CSRBF 
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with 𝜀 = 1 𝜋⁄  covers the whole surface of a unit sphere and the CSRBF with shape 

parameter 𝜀 > 1 𝜋⁄   covers only a part of the sphere surface. 

The results of the vector length error are visualized in Figure 4.14. It can be seen 

that the average error is almost identical for shape parameter 𝜀 ∈ 〈1 𝜋⁄ ;  4〉 for 5 ∙ 103 

and 104 sampling points and for larger shape parameters the error increases. The vector 

length error for 103 sampling points is slightly higher than for 5 ∙ 103 and 104 sampling 

points and starts distinctly increasing for shape parameter 𝜀 > 2. 

 

 

Figure 4.14: Average error of vector lengths of the RBF interpolation on a sphere for different 

shape parameters and different numbers of interpolated points. 

The results of the average angular displacement error are visualized in Figure 4.15. 

The progress of the error is similar to Figure 4.14 and, thus, the quality of the vector field 

interpolation is almost identical for shape parameters 𝜀 ∈ 〈1 𝜋⁄ ;  4〉 for 5 ∙ 103 and 104 

sampling points and for larger shape parameters the error increases. The angular 

displacement error for 103 sampling points is slightly higher than for 5 ∙ 103 and 104 

sampling points and starts distinctly increasing for shape parameter 𝜀 > 2. 
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Figure 4.15: Average angular displacement error [°] of vectors of RBF interpolation on a 

sphere for different shape parameters and different numbers of interpolated points. 

The CSRBF (4.31) is a “local” radial basis function, therefore, the RBF 

interpolation matrix is sparse. We varied the shape parameter and measured the 

occupancy of the interpolation matrix. The results can be seen in Figure 4.16. When the 

shape parameter is 𝜀 > 2 𝜋⁄  then more than half of the elements in the RBF interpolation 

matrix are equal zero. 

 

Figure 4.16: Occupancy of the interpolation matrix for the RBF interpolation on a unit sphere 

for different shape parameters. 

The RBF interpolation matrix has different condition numbers for different shape 

parameters because the occupancy of the matrix changes for different shape parameters. 

The condition number of this matrix is visualized in Figure 4.17 and it can be seen that 

the matrix is better conditioned with increasing shape parameter. It is justified by the fact 

that the occupancy of the RBF interpolation matrix decreases for increasing shape 

parameter.  
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Figure 4.17: Condition of the RBF interpolation matrix for different shape parameters and 

different numbers of interpolated points. 

Using the results from Figure 4.14-14, we can choose the best shape parameter to 

be  𝜀 = 4 for 5 ∙ 103 and 104 sampling points and 𝜀 = 2 for 103 sampling points. For 

this parameters the interpolation errors are the smallest, the RBF interpolation matrix is 

sparse and has a rather small condition number. For 𝜀 > 4, resp. 𝜀 > 2, will increase both 

interpolation errors and for 𝜀 < 4, resp. 𝜀 > 2, will increase the occupancy and the 

condition number of RBF interpolation matrix. 

The important property of the interpolated vector field is that for all shape 

parameters 𝜀 < 4 it preserves the type of all critical points in the vector field (4.28) left. 

And the location of all critical points in the interpolated vector field is almost identical to 

the locations of the critical points in the vector field (4.28) left. Thus the RBF interpolated 

vector field has the same topology as the vector field (4.28) left. 

4.5.2 Real Example of Vector Field on Sphere on Experiment Data 

Numerical forecasts can predict weather as well as wind velocity and direction. 

We used one such prediction of wind vector field for the whole word1. This data contains 

information about wind speed and wind direction every one degree in latitude and 

longitude. Therefore the resolution of numerically computed dataset is 360 × 180, which 

is 64 800 vectors in total. 

We did some reduction of this dataset, as for the North or South Pole is needed 

only one vector and for locations near these two poles, we can reduce the computed 

vectors as well. After the reduction, we ended up with 62 742 vectors. This wind data 

were interpolated using RBF with CSRBF (4.30) and shape parameter 𝜀 =  1. The RBF 

interpolation was used to create the visualization of wind vector field on the sphere, see 

Figure 4.18. 

                                                 
1 US GFS global weather model. National Centers for Environmental Information (NCEI), 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs, 

[downloaded: 21.3.2016]. 
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a) 

 

b) 

Figure 4.18: Visualization of RBF interpolated wind vector field from numerical simulation. 
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5 PDE and meshless technique 

Meshless methods are uniquely simple, yet provide solution accuracies for certain 

classes of equations that rival those of finite elements and boundary elements without 

requiring the need for mesh connectivity. Ease in programming, no domain or surface 

discretization, no numerical integration, and similar formulations for 2𝐷, 3𝐷 and higher 

dimensional cases make these methods very attractive. 

Although many numerical and analytical schemes exist for solving engineering 

problems, the meshless method is a particularly attractive method that is receiving 

attention in the engineering and scientific modelling communities. Finite difference 

(FDM), finite volume (FVM), and finite element (FEM) methods have been historically 

used to model a wide variety of engineering problems in complex geometries that may 

require extensive meshing. The meshless method is simple, accurate, and requires no 

meshing. 

The need to accurately simulate various physical processes in complex geometries 

is important. Today, advances in numerical schemes and enhanced hardware have lead to 

many commercial codes that can solve complex stress-strain, heat transfer, fluid flow, 

and other problems. Recently, advances in the development and application of meshless 

techniques show they can be strong competitors to the more classical finite 

difference/volume and finite element approaches. Textbooks by Liu [Liu09] and 

Fasshauer [Fas07] discuss meshless methods, implementation, algorithms, and coding 

issues for stress-strain problems. 

There exist several types of meshless methods. The more common techniques 

include kernel methods, moving least square method, meshless Petrov-Galerkin, partition 

of unity methods, smooth-particle hydrodynamics, and radial basis functions. Each 

technique has particular traits and advantages for specific classes of problems. Generally 

the simplest and easiest to implement is the radial basis function approach. 

5.1 Derivation of Radial Basis Function 

To compute PDEs using RBF meshless technique we need to know how to 

compute the derivation of radial basis function. A radial basis function of two variables, 

i.e. 

 𝜑(𝑟) = 𝜑(‖𝒙‖) = 𝜑 (√𝑥2 + 𝑦2) , (5.1) 

where 𝒙 = [𝑥, 𝑦]𝑇. The chain rule implies 
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 𝜕

𝜕𝑥
𝜑(‖𝒙‖) =

𝑑

𝑑𝑟
𝜑(𝑟)

𝜕

𝜕𝑥
𝑟(𝑥, 𝑦) 

=
𝑑

𝑑𝑟
𝜑(𝑟)

𝑥

√𝑥2 + 𝑦2
 

=
𝑥

𝑟

𝑑

𝑑𝑟
𝜑(𝑟) 

(5.2) 

since  

 𝑟 = ‖𝒙‖ = √𝑥2 + 𝑦2 . (5.3) 

Similarly  

 𝜕

𝜕𝑦
𝜑(‖𝒙‖) =

𝑦

𝑟

𝑑

𝑑𝑟
𝜑(𝑟) . (5.4) 

The second order derivatives are given by 

 𝜕2

𝜕𝑥2
𝜑(‖𝒙‖) =

𝑑2

𝑑𝑟2
𝜑(𝑟) (

𝜕

𝜕𝑥
𝑟(𝑥, 𝑦))

2

+
𝑑

𝑑𝑟
𝜑(𝑟)

𝜕2

𝜕𝑥2
𝑟(𝑥, 𝑦) 

=
𝑥2

𝑟2

𝑑2

𝑑𝑟2
𝜑(𝑟) +

𝑦2

𝑟3

𝑑

𝑑𝑟
𝜑(𝑟) , 

(5.5) 

as well as  

 𝜕2

𝜕𝑦2
𝜑(‖𝒙‖) =

𝑦2

𝑟2

𝑑2

𝑑𝑟2
𝜑(𝑟) +

𝑥2

𝑟3

𝑑

𝑑𝑟
𝜑(𝑟) (5.6) 

and  

 𝜕2

𝜕𝑥𝜕𝑦
𝜑(‖𝒙‖) =

𝑥𝑦

𝑟2

𝑑2

𝑑𝑟2
𝜑(𝑟) +

𝑥𝑦

𝑟3

𝑑

𝑑𝑟
𝜑(𝑟) . (5.7) 

The derivatives of the basic function with respect to 𝑟, i.e. 𝜑(𝑟), need to be 

replaced with the actual derivative. For example for globally supported Gaussian RBF 

 𝜑(𝑟) = 𝑒−(𝜀𝑟)2 (5.8) 

is the derivative equal to  

 𝜕

𝜕𝑟
𝜑(𝑟) = −2𝜀2𝑟𝑒−(𝜀𝑟)2 (5.9) 

 𝜕2

𝜕𝑟2
𝜑(𝑟) = 2𝜀2𝑒−(𝜀𝑟)2(2(𝜀𝑟)2 − 1) (5.10) 

and this function is 𝐶∞ at the origin. For another example a compactly supported 

Wendland’s 𝜑3,2 RBF 
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 𝜑(𝑟) = (1 − 𝜀𝑟)+
6 (35(𝜀𝑟)2 + 18𝜀𝑟 + 3)  (5.11) 

is the derivative equal to  

 𝜕

𝜕𝑟
𝜑(𝑟) = −56𝜀2𝑟(5𝜀𝑟 + 1)(1 − 𝜀𝑟)+

5  (5.12) 

 𝜕2

𝜕𝑟2
𝜑(𝑟) = 56𝜀2(35(𝜀𝑟)2 − 4𝜀𝑟 − 1)(1 − 𝜀𝑟)+

4  (5.13) 

and this function is 𝐶4 at the origin. 

5.2 Kansa’s collocation method 

Kansa [Kan90a], [Kan90b] proposed a non-symmetric method for the solution of 

elliptic PDEs with radial basis functions. The collocation method is computed on some 

given domain Ω ⊂ ℝ𝑑 and solves a linear elliptic partial differential equation of the form 

 ℒ𝑢(𝒙) = 𝑓(𝒙) ,      𝒙 in Ω , (5.14) 

where ℒ is a differential operator and we use Dirichlet boundary conditions  

 𝑢(𝒙) = 𝑔(𝒙) ,      𝒙 on Ω . (5.15) 

Kansa’s collocation method chooses to represent the approximate solution �̂� by a radial 

basis function that is analogous to the one used for scattered data interpolation, i.e.  

 

�̂�(𝒙) = ∑𝜆𝑗

𝑁

𝑗=1

𝜑(‖𝒙 − 𝝃𝑗‖) , (5.16) 

where 𝜆𝑗 are coefficients of radial basis functions and  𝝃𝑗 are centres of radial basis 

functions. The collocation matrix 𝑨 that arises from equation (5.14) and the boundary 

condition (5.15) at the collocation points has the form 

 
𝑨 = [

�̃�ℒ

�̃�
] , (5.17) 

where two blocks �̃�ℒ and �̃� are generated as following 

 (�̃�ℒ)𝑖𝑗
= ℒ𝜑(‖𝒙𝑖 − 𝝃𝑗‖) ,      𝒙𝑖 ∈ 𝜁 

(�̃�)
𝑖𝑗

= 𝜑(‖𝒙𝑖 − 𝝃𝑗‖) ,      𝒙𝑖 ∈ 𝜓 , 
(5.18) 

where 𝒙𝑖 ∈ 𝜁 are interior points and  𝒙𝑖 ∈ 𝜓 are boundary points. The problem is 

well-posed if the linear system 𝑨𝝀 = 𝒉, with 𝜆 = [𝜆1, … , 𝜆𝑁]𝑇 and 𝒉 a vector consisting 

of entries 𝑓(𝒙𝑖) followed by 𝑔(𝒙𝑖) has a unique solution.  
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The change of boundary conditions (5.15) changes only corresponding rows of 

the matrix 𝑨 in (5.17) and the corresponding numbers in the right-hand side 𝒉.  

The above described method is rather a general description of a numerical method 

with no particular RBF in mind. Kansa proposed to use multiquadric radial basis function 

(5.19) in (5.16) and sometimes this method is called as multiquadric method. 

 φ(𝑟) = √1 + (𝜀𝑟)2 (5.19) 

Kansa proposed to use multiquadrics (5.19) with varying shape parameter 𝜀𝑗. For 

a constant shape parameter 𝜀 the matrix 𝑨 may be singular for some configuration of 

centres of radial basis function 𝝃𝑗. This problem can appear as the matrix for collocation 

problem is composed of rows that are created from different functions, which depending 

on the differential operator ℒ, might not even be radial anymore. 

Later Moridis and Kansa [Mor94] suggested how Kansa’s collocation method can 

be used for other types of differential equation problems such as non-linear elliptic PDEs, 

systems of elliptic PDEs and time-dependent parabolic or hyperbolic PDEs. 

5.3 Galerkin approximations 

Galerkin method [Atl02] is a mathematical method used to obtain approximate 

solutions of partial differential equations which contain terms with odd order, like the 

following equation  

 𝑑𝑢

𝑑𝑥
+

𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥) ,      𝑥 ∈ (0, 𝑅) (5.20) 

with boundary conditions 

 𝑢(0) = 𝑢0 
𝑑𝑢

𝑑𝑥
|
𝑥=𝑅

= 𝑢𝑅
′  , 

(5.21) 

where 𝑢(𝑥) is the unknown function to be approximated using Galerkin method. 

Multiplying equation (5.20) by a test function 𝑣(𝑥) and integrating by parts we obtain the 

weak formulation of (5.20) 

 

∫ (𝑣
𝑑𝑢

𝑑𝑥
) 𝑑𝑥

𝑅

0

− ∫ (
𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑥
) 𝑑𝑥

𝑅

0

+ [𝑣
𝑑𝑢

𝑑𝑥
]
0

𝑅

= ∫ 𝑓(𝑥)𝑣 𝑑𝑥

𝑅

0

     ∀𝑣 ∈ 𝐻0
1(0, 𝑅) , (5.22) 

wher𝐻0
1(0, 𝑅)e  is the Sobolev space 

 
𝐻0

1(0, 𝑅) = {𝑣 ∈ 𝐿2(0, 𝑅) ∶  
𝑑𝑣

𝑑𝑥
∈ 𝐿2(0, 𝑅)   and   𝑣(0) = 𝑣(𝑅) = 0} , (5.23) 
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If 𝑢 is regular (for example with two continuous derivatives) then problems (5.20) and 

(5.21) are equivalent. We can use (5.21) in order to define an approximation to 𝑢. We are 

going to construct polygonal approximations to 𝑢. With this purpose let us introduce a 

uniform partition of the domain (0, 𝑅) into 𝑁 + 1 subintervals (𝑥𝑗  , 𝑥𝑗+1) with 

 
𝑥𝑗 =

𝑗𝑅

𝑁 + 1
   for   𝑗 = 0,… ,𝑁 + 1 (5.24) 

and consider the space 𝑉𝑁 of polygonal functions vanishing at the boundary of (0, 𝑅), i.e., 

 𝑉𝑁 = {𝑣 ∈ 𝐶0 ∶  𝑣|(𝑥𝑗,𝑥𝑗+1)  is linear and  𝑣(0) = 𝑣(𝑅) = 0} , (5.25) 

where 𝐶0 denotes the space of continuous functions. 

Observe that, ∀𝑁, 𝑉𝑁 is a subspace of 𝐻0
1(0, 𝑅) and that 𝑉𝑁 has finite dimension. 

Indeed, a polygonal function 𝑣 ∈ 𝑉𝑁 is uniquely determined by its values at the finite 

number of points 𝑥1, . . . , 𝑥𝑁. 

We define the Galerkin approximation 𝑢𝑁 ∈ 𝑉𝑁 to 𝑢 by imposing (5.22) but only 

for functions ∈ 𝑉𝑁 , i.e., 𝑢𝑁 ∈ 𝑉𝑁 is such that: 

 

∫ (𝑣
𝑑𝑢𝑁

𝑑𝑥
) 𝑑𝑥

𝑅

0

− ∫ (
𝑑𝑣

𝑑𝑥

𝑑𝑢𝑁

𝑑𝑥
) 𝑑𝑥

𝑅

0

+ [𝑣
𝑑𝑢𝑁

𝑑𝑥
]
0

𝑅

= ∫ 𝑓(𝑥)𝑣 𝑑𝑥

𝑅

0

     ∀𝑣 ∈ 𝑉𝑁 . (5.26) 

We are going to see that there is a unique 𝑢𝑁 satisfying (5.26) and moreover that 

it can be computed by solving a linear system of equations because 𝑉𝑁 is finite 

dimensional. Given a basis 𝜙𝑗 of 𝑉𝑁, 𝑢𝑁 can be written as 

 

𝑢𝑁 = ∑𝑈𝑗𝜙𝑗

𝑁

𝑗=1

 , 𝑈𝑗 ∈ ℝ . (5.27) 

Now, since any 𝑣 ∈ 𝑉𝑁 is a linear combination of the 𝜙𝑗, we can rewrite (5.26) as 

the following equation 

 

∫ (𝜙𝑘

𝑑𝑢𝑁

𝑑𝑥
) 𝑑𝑥

𝑅

0

− ∫ (
𝑑𝜙𝑘

𝑑𝑥

𝑑𝑢𝑁

𝑑𝑥
) 𝑑𝑥

𝑅

0

+ [𝜙𝑘

𝑑𝑢𝑁

𝑑𝑥
]
0

𝑅

= ∫ 𝑓(𝑥)𝜙𝑘 𝑑𝑥

𝑅

0

      

for 𝑘 = 1,… ,𝑁 

(5.28) 

and using (5.27) we can rewrite (5.28) as  

 

∑𝑈𝑗 (∫ (𝜙𝑘

𝑑𝜙𝑗

𝑑𝑥
− (

𝑑𝜙𝑘

𝑑𝑥

𝑑𝜙𝑗

𝑑𝑥
))𝑑𝑥

𝑅

0

+ [𝜙𝑘

𝑑𝜙𝑗

𝑑𝑥
]
0

𝑅

)

𝑁

𝑗=1

= ∫ 𝑓(𝑥)𝜙𝑘 𝑑𝑥

𝑅

0

      

for 𝑘 = 1,… ,𝑁 

(5.29) 
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Therefore we can find 𝑼 = [𝑈1, … , 𝑈𝑁]𝑇 by solving the system of linear equations 

 𝑨𝑼 = 𝑭 , (5.30) 

where matrix 𝑨 is a matrix of size 𝑁 × 𝑁 with elements  

 

𝐴𝑘𝑗 = ∫ (𝜙𝑘

𝑑𝜙𝑗

𝑑𝑥
− (

𝑑𝜙𝑘

𝑑𝑥

𝑑𝜙𝑗

𝑑𝑥
))𝑑𝑥

𝑅

0

+ [𝜙𝑘

𝑑𝜙𝑗

𝑑𝑥
]
0

𝑅

 (5.31) 

and vector 𝑭 has elements 

 

𝐹𝑘 = ∫ 𝑓(𝑥)𝜙𝑘 𝑑𝑥

𝑅

0

 (5.32) 

Solving the system of linear equations (5.30) we can then compute the final 

solution of function 𝑢𝑛 using (5.27). 

5.4 Hermite-based method 

[Har90], [Wu92] and [Kan97] proposed a method for the solution of elliptic PDEs 

with radial basis functions. The collocation method is computed on some given domain 

Ω ⊂ ℝ𝑑 and solves a linear elliptic partial differential equation of the form 

 ℒ𝑢(𝒙) = 𝑓(𝒙) ,      𝒙 in Ω , (5.33) 

where ℒ is a differential operator and we use Dirichlet boundary conditions  

 𝑢(𝒙) = 𝑔(𝒙) ,      𝒙 on Ω . (5.34) 

In order to be able to apply the results from generalized Hermite interpolation that will 

ensure the non-singularity of collocation matrix we can use the following expansion for 

the unknown function 𝑢  

 

�̂�(𝒙) = ∑𝜆𝑗

𝑁𝜁

𝑗=1

ℒ𝝃𝜑(‖𝒙 − 𝝃𝑗‖)|

𝝃=𝝃𝑗

+ ∑ 𝜆𝑗

𝑁

𝑗=𝑁𝜁+1

𝜑(‖𝒙 − 𝝃𝑗‖), (5.35) 

where 𝜆𝑗 are coefficients of radial basis functions, 𝝃𝑗 are centres of radial basis functions, 

𝑁𝜁 denotes the number of nodes in the interior of Ω, and ℒ𝝃 is the differential operator 

used in the differential equation (5.33), but acting on 𝜑 viewed as a function of the second 

argument, i.e . ℒ𝜑 is equal to ℒ𝝃𝜑 up to a possible difference in sign (|ℒ𝜑| = |ℒ𝝃𝜑|). 

After enforcing the collocation conditions 

 ℒ�̂�(𝒙𝑖) = 𝑓(𝒙𝑖) 𝒙𝑖 ∈ 𝜁

  �̂�(𝒙𝑖) = 𝑔(𝒙𝑖)   𝒙𝑖 ∈ 𝜓 ,
 (5.36) 
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where 𝒙𝑖 ∈ 𝜁 are interior points and  𝒙𝑖 ∈ 𝜓 are boundary points, we end up with 

collocation matrix 𝑨 that is of the form 

 
𝐴 = [

�̂�ℒℒ𝝃 �̂�ℒ

�̂�ℒ𝝃 �̂�
] . (5.37) 

The four blocks in (5.37) are generated as follows 

 (�̂�ℒℒ𝝃)
𝑖𝑗

= ℒℒ𝝃𝜑(‖𝒙 − 𝝃‖)|
𝒙=𝒙𝑖,𝝃=𝝃𝑗

 

(�̂�ℒ)
𝑖𝑗

= ℒ𝜑(‖𝒙 − 𝝃𝑗‖)|
𝒙=𝒙𝑖

 

(�̂�ℒ𝝃)
𝑖𝑗

= ℒ𝝃𝜑(‖𝒙𝑖 − 𝝃‖)|
𝝃=𝝃𝑗

 

(�̂�)
𝑖𝑗

= 𝜑(‖𝒙𝑖 − 𝝃𝑗‖) 

𝒙𝑖, 𝝃𝑗 ∈ 𝜁 

𝒙𝑖 ∈ 𝜁, 𝝃𝑗 ∈ 𝜓 

𝒙𝑖 ∈ 𝜓, 𝝃𝑗 ∈ 𝜁 

𝒙𝑖, 𝝃𝑗 ∈ 𝜓 

(5.38) 

The matrix 𝑨 is non-singular as long as 𝜑 is chosen appropriately and the collocation 

approach for �̂� is well-posed. The matrix 𝑨 is symmetrical and although 𝑨 consist of four 

blocks, it still is the same size, namely 𝑁 × 𝑁, as the collocation matrix obtained for 

Kansa’s approach.  

5.5 Problems with PDE and meshless technique 

When computing partial differential equations using meshless techniques, some 

problems can arise.  

5.5.1 Hyper-viscosity 

According to [For11], the RBF differentiation matrices for linear advection 

typically have some eigenvalues with positive real part, making time-integration unstable 

with standard ODE methods. A commonly used solution for this type of instability in 

finite difference methods is artificial viscosity, which acts to damp the growing 

eigenmodes and thus stabilizing the method. This is typically implemented by adding a 

viscous term to the right-hand side of the PDE 

 𝜕𝑢

𝜕𝑡
= ℒ(𝑢) + 𝜀∆𝑢 , (5.39) 

where  

 𝜕𝑢

𝜕𝑡
= ℒ(𝑢) (5.40) 

is the original problem and 𝜀 is a scaling parameter. Optimally, the viscosity should leave 

the resolved, correctly advected modes intact. For high order methods which provide a 

larger range of resolved modes, a more selective damping is necessary. This suggests the 

use of a higher order viscosity operator, commonly known as hyper-viscosity. 
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Figure 5.1 shows the effect of hyper-viscosity for linear advection. In this 

example, an example of cosine bell is advected using the RBF finite difference method 

with and without added hyper-viscosity. 

 

Figure 5.1: Example of the result of an advected cosine bell. (from [Leh12]). 

5.5.2 Shape parameter of RBF 

Many RBFs are defined by a constant called the shape parameter. The choice of 

basis function and shape parameter have a significant impact on the accuracy of an RBF 

method. Locating an optimal shape parameter is a difficult problem and a topic of current 

research. 

Many RBFs, including all of the ones studied here, have a variable 𝜀 in their 

definitions. This variable 𝜀 is called the shape parameter. For the RBF definitions listed 

in Table 1, a smaller shape parameter corresponds to a “flatter” or “wider” basis function. 

The limit as 𝜀 → 0 is often referred to as the “flat” limit, because 𝜀 = 0 corresponds to a 

constant basis function. 

Figure 5.2 shows three Gaussian RBFs with different shape parameters. The RBFs 

are graphed with two-dimensional inputs on the same domain. Changing the shape 

parameter of an RBF alters the interpolant, can have a significant impact on the accuracy 

of the approximation and moreover the shape parameter has very high influence on the 

stability of PDE system that is solved using meshless techniques with RBF. 

𝜀 = 3 𝜀 = 1 𝜀 = 0.4 

 

Figure 5.2: Gaussian RBFs with different shape parameters plotted on the same domain. 

Most of the RBFs used to approximate the solution of partial differential equation 

contain a shape parameter 𝜀 which must be specified by the user. This random selection 
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of 𝜀 is a disadvantage. A number of papers have been written on choosing optimal value 

of RBFs shape parameter. For example [Har71] suggested the use of shape parameter 

 
𝜀 = 0.815

∑ 𝑑𝑖
𝑁
𝑖=1

𝑁
 , (5.41) 

where 𝑑𝑖 is the distance from the data point 𝑥𝑖 to its nearest neighbor. [Fra82] suggested 

to use  

 
𝜀 = 1.25

𝐷

√𝑁
 , (5.42) 

where 𝐷 is the diameter of the minimal circle enclosing all data points. [Rip99] proposed 

an algorithm for choosing an optimal value of RBFs shape parameter. [Fas07a] suggested 

an algorithm for choosing optimal value of RBF shape parameter for iterated moving least 

squares approximation and for RBF pseudo-spectral methods for the solution of partial 

differential equations. Recently [Sch11] proposed another procedure for selecting good 

value of 𝜀 in RBF-interpolation. More recently [Bay11] proposed an algorithm for 

selecting an optimal value of multiquadric shape parameter 𝜀 in RBF-FD method. 
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6 Visualization of vector fields 

One of the goals of scientific visualization is to display measurements of physical 

quantities so the underlying physical phenomena can be interpreted accurately, quickly, 

and without bias. Great care is taken in choosing where such measurements will be made 

so that inferences about the underlying phenomena will be correct. Many people have 

addressed, with qualitative or anecdotal advice, how best to design visualizations [Lai05] 

or how to compute them fast on GPU [Bur07].  

Some examples of visualization methods can be seen in Figure 6.1. The shortcut 

GRID represents icons on a regular grid, i.e. Hedgehogs visualization technique. JIT 

represents icons on a jittered grid, LIT are icons using one layer of a visualization method 

that borrows concepts from oil painting [Kir99], LIC is shortcut for line integral 

convolution [Cab93], OSTR are image-guided streamlets, i.e. integral curves and GSTR 

are streamlets seeded on a regular grid. 

 

Figure 6.1: Example of some vector field visualization methods. (from [Lai05]). 

Visualization techniques can be divided into two groups. One are global 

techniques and the second one are local techniques. Both of them will be described in the 

following chapters. 
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6.1 Global techniques 

Global techniques of vector field visualization methods visualize the whole vector 

field in one picture. The user have to minimally interact with the visualization system, i.e. 

only very small interaction is required. 

6.1.1 Hedgehogs 

The less dimensions a dynamical system has, the easier visualization is. 

Techniques for the visualization of two-dimensional dynamical systems (or vector fields) 

already have quite a tradition in flow investigation. Hedgehog plots, also called arrow 

plots, usually show a large number of small arrows that indicate the flow direction at 

many (regularly spaced) points of the two-dimensional domain. Often arrows are 

normalized, so flow velocity is not encoded. This is, to prevent the display from 

overloading due to very long and overlapping arrows, see Figure 6.2 for an example. 

 

Figure 6.2: Example of vector flow visualized with hedgehogs method. Arrows show the 

direction of vector field and color represents the velocity. 

6.1.2 Line Integral Convolution 

Line Integral Convolution (LIC) is a powerful technique for generating striking 

images and animations from vector data. [Cab93] presented a powerful technique for 

imaging vector data called line integral convolution. This algorithm has been used as a 

general tool for visualizing vector fields. The method has rapidly found many application 

areas, ranging from computer arts to scientific visualization. Based upon locally filtering 

an input texture along a curved stream line segment in a vector field, it is able to depict 

directional information at high spatial resolutions. 

Each data point in a flow field (apart from critical points) lies on a unique path or 

streamline. Ideally we can set the color or intensity of pixels in the output image such that 
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pixels along a common path have a common color, while those on adjacent paths would 

have their own color. Line integral convolution is thus calculated using the formula 

 
𝐼(𝒙) = ∫ 𝑘(𝑡 − 𝑡0) ∙ 𝑇(𝒓(𝑡))𝑑𝑡

𝑡0+𝐿

𝑡0−𝐿

 , (6.1) 

where 𝐼(𝒙) is the output intensity of pixel at position 𝒙, 𝑇(𝒙) is the intensity of noise at 

position 𝒙, 𝒓(𝑡) is the curve representing a streamline for parameter 𝑡 ∈ 〈𝑡0 − 𝐿, 𝑡0 + 𝐿〉 

and 𝑘(𝑡) is the kernel of the filter. The kernel can be linear as the simplest solution or can 

have any other form. Using LIC we can easily understand the topology of the vector field, 

see Figure 6.3 and Figure 6.4. 

 

Hedgehog plot Noise texture Line integral convolution 

Figure 6.3: Hedgehog plot and noise texture as an input and LIC as an output of the Line integral 

convolution method. 

The LIC algorithm is designed as a function which maps an input vector field and 

texture to a filtered version of the input texture. The dimension of the output texture is 

that of the vector field. Both the texture and the vector field can be pre-processed and 

combined with post processing on the output image, see Figure 6.4. 
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Figure 6.4: Example of RBF interpolated wind flow over the surface of earth, which is visualized 

with LIC method. 

6.1.3 Method using concepts from painting 

[Kir99] presents a new visualization method for 2𝐷 flows, which allows 

combining multiple data values in an image for simultaneous viewing. It utilizes concepts 

from oil painting, art, and design to examine problems within fluid mechanics. The 

method uses a combination of discrete and continuous visual elements arranged in 

multiple layers to visually represent the data. The representations are inspired by the brush 

strokes artists apply in layers to create an oil painting. Visualization displays commonly 

visualized quantities such as velocity and vorticity together with three additional 

mathematically derived quantities: the rate of strain tensor, the turbulent charge and 

turbulent current.  

Example of vector field visualization can be seen in Figure 6.5. The velocity is 

represented by arrow direction, speed is represented by arrow area, vorticity is 

represented by underpainting color (blue for clockwise and yellow for 

counter-clockwise), rate of strain is represented by logarithms of ellipse radius, 

divergence is represented by ellipse area and shear is represented by ellipse eccentricity.   
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Figure 6.5: Visualization of simulated 2𝐷 flow past a cylinder at Reynolds number = 100 (left) 

and experimental 2𝐷 flow past an airfoil (right), (from [Kir99]). 

6.1.4 Texture splats 

A popular technique for volume rendering is known as splatting. It uses two 

textures, i.e. splats, for rendering the vector field. Figure 6.6 illustrates a series of such 

splats. For the splatting of vector splats, two additional calculations must be carried out. 

First, the vector field direction for each splat is determined and transformed to viewing 

coordinates. The projection of this vector is then used to determine a rotation matrix for 

the polygon splat. The splat is rendered by selecting a splat from the splat table in Figure 

6.6 (left) as an intensity map, and for scalar fields, the same splat in Figure 6.6 (right) for 

an opacity map. 

  

Figure 6.6: Portion of intensity table (left) and portion of opacity table (right) (from [Cra93]). 

Example visualization of vector filed can be seen in Figure 6.7. It shows the wind 

velocities in different altitudes and the percent cloudiness on some part of world. 
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Figure 6.7: Visualization of percent cloudiness and wind velocities. The wind velocities are color 

coded by altitude (from [Cra93]). 

6.1.5 Streamlets 

Streamlets are generated by integrating the flow vectors for a very short time. 

Even though short, streamlets already communicate temporal evolution along the flow. 

Figure 6.8 illustrates an example of inspecting 2𝐷 flow field by several streamlets. This 

technique is easily extendable to 3𝐷, although perceptual problems may arise due to 

distortions resulting from the rendering projection. Thus, seeding becomes more 

important in 3𝐷. 

 

Figure 6.8: Example of vector field visualized by using streamlets. 

[Lof98] uses a thread of streamlets along characteristic structures of 3𝐷 flow to 

gain selective, but importance-based seeding. The publication uses a probability 

distribution function assuring the streamlets to be distributed uniformly around a selected 

base trajectory. The function is designed so that with increasing distance from this 

trajectory, the distribution of streamlets fades out. 
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6.2 Local technique 

Local techniques of vector field visualization methods visualize only some parts 

of the vector field. The user usually have to interact with the visualization system, i.e. 

select some important parts of vector field to perform the visualization. 

6.2.1 Stream lines 

Performing longer integration, in comparison to streamlets, results in obtaining 

streamlines. Streamlines are a family of curves that are instantaneously tangent to the 

velocity vector of the flow. These show the direction a massless fluid element will travel 

in at any point in time. Concerning the extension to 3𝐷 (see example in Figure 6.9), the 

same condition stands for streamlines as well as for streamlets, i.e. careful seeding is 

necessary. Otherwise, visual clutter can easily become a problem and the results might 

be difficult to interpret. 

 

Figure 6.9: Example of vector field visualized by using streamlines.1 

There are some important goals to consider in order to generate an effective 

streamline visualization. In particular, a good seeding strategy should have the following 

characteristics [Ver00].  

The streamlines should not miss any interesting regions in the vector field. The 

interesting regions are those that we would like to study in the vector field, e.g. critical 

points, separation, and re-attachment lines. In addition, streamlines should cover the 

entire region of the field. Hence, even if the field is more or less uniform in a region, some 

streamlines should indicate the uniform nature of the flow in these regions. This goal is 

easier to achieve than other goals because one can always generate a lot of streamlines 

such that nothing important is missed. However, simply populating the field with more 

streamlines is not acceptable because some areas in the flow field, such as convergent 

regions, will force streamlines to cluster together, making it difficult to distinguish among 

                                                 
1 image source: http://medspark.ms/Technical-Glossary-All.php  
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individual streamlines. More importantly, it defeats the characteristic of uniformity as 

described next.  

The streamlines should be more or less uniformly distributed over the field. This 

is a more challenging goal to achieve because while we can control where to place the 

seeds, we do not know how the resulting streamlines will behave. Uniformity is directly 

related to the density of streamlines crossing a unit area of the flow field. Hence, density 

of streamlines is an important parameter.  

It is desirable from the point of view of aesthetics that the streamlines show 

continuity in the flow. Hence, one would prefer fewer long streamlines over many short 

streamlines. The latter tend to give the impression of “choppiness” while the former tend 

to give an impression of smooth continuous flow. In general, given an arbitrary flow field, 

the longer the streamlines, the higher the likelihood that they will tend to crowd together 

in some areas and disperse in other areas, thereby making it difficult to meet both the 

uniformity and continuity criteria simultaneously. Therefore, this parameter needs to be 

balanced against the uniformity criterion. 

 
a) 

 
b) 

 
c) 

Figure 6.10: Effects of regular seeding (49 streamlines) (a), effects of image-guided seeding 

(47 streamlines) (b), effects of flow-guided seeding (47 streamlines) (c). Regular and 

image-guided seeding strategies may miss important flow features, especially when seeding is 

sparse. Both image-guided and flow-guided streamlines were generated such that the minimum 

separating distance of streamlines is 3% of the image width (from [Ver00]). 

Since the flow pattern in the neighbourhood of a critical point is defined by the 

type of critical point, [Ver00] and [Ye05] proposed different seeding patterns for different 

types of critical points. They refer to these seeding patterns as templates. They are 

designed so that streamlines traced from them can effectively capture the local flow 

patterns around the critical points. Figure 6.11 illustrates the seeding templates for the 

three types of flow patterns: centre and spiral, source and sink, and saddle. Recall that the 

type of the critical point depends on the eigenvalues of the Jacobian matrix at the critical 

point. While the sign and magnitude of the eigenvalues determine the divergence or 

convergence rate of the flow, the related eigenvectors tell us the directions of the 
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streamlines. Both the eigenvalues and eigenvectors are used as guides in developing the 

seeding templates. 

Centre, spiral: place seeds along a straight line emanating from the critical point 

location. Figure 6.11 (a) shows the seed template for centre and spiral type of critical 

points. 

Source, sink: place seeds along the perimeter of a circle around the critical point. 

Figure 6.11 (b) shows the seed template for this type of critical point. 

Saddle: place seeds along the lines that bisect the principal eigen direction. Figure 

6.11 (c) shows the seed template for saddles. 

 
a) 

 
b) 

 
c) 

Figure 6.11: Seed templates for various critical points. The seeds are placed along the solid lines. 

The bold dots represent the seed template and the dashed lines are the streamlines traced using 

the seeds from the template. (a) centre, spiral; (b) source, sink; (c) saddle. (from [Ye05]). 

6.2.2 Path lines 

Pathlines are used to visualize the trajectory of a fluid particle as it advances with 

the passage of time. Pathlines, are therefore, history lines, an animation of all the fluid 

particles in the flow field.  

Pathlines are the trajectories that individual fluid particles follow. These can be 

thought of as "recording" the path of a fluid element in the flow over a certain period. The 

direction that the path takes will be determined by the streamlines of the fluid at each 

moment in time. Pathlines are allowed to intersect themselves or other pathlines (except 

the starting and end points of the different pathlines, which need to be distinct). 
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Figure 6.12: Visualization of pathlines. A long exposure photo of sparks from a campfire is used 

to illustratively show the pathlines for the flow of hot air. 

6.2.3 Streak lines 

Streaklines [Wei10] are locations of all the fluid particles that have passed 

continuously through a particular spatial point in the past. Particle injected into the fluid 

at a fixed point extends along a streakline. Streaklines are integral curves, produced by 

simulating continuous injection of particles into the flow field from constant location over 

certain period of time. Displaying streak lines serves, at the first place, for unsteady flow 

data visualization, for, in case of steady flows, streaklines coincide with streamlines and 

pathlines. 

Streamline computation always exploits vector information from just a single 

instant of time. A trace obtained this way, therefore describes the trajectory of an 

imaginary massless particle moving through the flow field at infinite speed, which 

diverges from what users would usually expect. Such technique is called instantaneous. 

Streak lines, on the other hand, be long among time correlated methods, which 

progressively include information from consecutive temporal instants letting the integral 

curve develop in time. 
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Figure 6.13: Visualization of streak line. Particles are injected from only one location but 

different times. We can see the difference between a streak line and a path line. (from [Wei12]). 
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7 Proposal of future research 

In this work a study about the approximation and visualization of the vector fields 

has been presented. Although the broadness of the topic and the variety of existing 

techniques did not allow us to make this survey exhaustive but the main attitudes have 

been described and the most important aspects have been discussed in detail.  

In the next text, we summarize some of the problems that arises in the flow 

visualization and that we want to investigate in our future research. 

Advances in hardware are leading to more computational power and the ability to 

process larger and more complex simulations with faster computation times. Therefore, 

flow visualization algorithms must be able to handle this large amount of data and present 

the results ideally at interactive frame rates in order to be most useful in the analysis of 

simulation data. For this purpose can be used algorithms for vector field simplification. 

This algorithms reduce the size of the dataset and some of them even simplify the 

topological skeleton of the vector field. We want to use Radial basis functions for 

simplification of the vector field. When the RBF approximation will use appropriately 

placed positions of radial basis functions for approximation depending on the topology 

of the vector field, then this approximation will be a simplified description of the vector 

filed. Moreover, this approximation could be used for removing a noise from a vector 

field, as most measured vector fields contain a lot of noise. The RBF approximation of a 

vector field is an analytical description, which is much more useful than the standard 

discrete representation of a vector field. 

One of the challenges specific to geometric flow visualization is the seeding 

strategy used to place the objects within the data domain. The position of the objects 

greatly affects the final visualization. Different features of the velocity field may be 

depicted depending on the final position and the spatial frequency of the objects in the 

data domain. It is critical that the resulting visualization captures the features of the 

velocity field, e.g. vortices, turbulence, sources, sinks and laminar flow, which the user 

is interested in. This aspect becomes an even greater challenge in the case of 3𝐷 vector 

fields where a balance of field coverage, occlusion and visual complexity must be 

maintained. Time-dependent data also raise a challenge because the visualization then 

depends on when objects are seeded. To create one such ideal visualization of the vector 

filed, we need to extract the most information about the vector field. Having a meshless 

approximation or interpolation of the vector field, we want to extract some more features 

of the vector field. This should be possible as the analytical description contains more 

information than the standard discrete representation. 

Now, the solutions for topology-based unsteady flow visualization remain 

incomplete, compared with the level of research achieved for steady flows. Incremental 

extensions of methods that work well for steady flows are proven not to be able to fully 

capture the behaviour of time-varying vector flows. Therefore, new approaches and 

methods are needed and we would like to investigate our research in this area as well.
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 Erasmus stay at Mälardalen University, Västerås, Sweden 

A.2 Conferences and talks 

2016: SIGRAD 2016, Visby, Sweden 

 Vector Field Interpolation with Radial Basis Functions 

2016: CGVCVIP 2016, Funchal, Portugal 

 Vector Field RBF Interpolation on a Sphere 

2015: ICIG 2015, Tianjin, China 

 A Point in Non-Convex Polygon Location Problem Using the Polar Space 

Subdivision in E2 

2015: ICCS 2015, Reykjavík, Iceland 

 Highly Parallel Algorithm for Large Data In-Core and Out-Core Triangulation in 

E2 and E3 

2014: SIGGRAPH 2014: Vancouver, Canada 

 In –Core and Out-Core Memory Fast Parallel Triangulation Algorithm for Large 

Data Sets in E2 and E3 

2014: ICCSA 2014, Guimarães, Portugal 

 Fast Parallel Triangulation Algorithm of Large Data Sets in E2 and E3 for In-Core 

and Out-Core Memory Processing 

2013: Talk at ÚGN AVČR, Ostrava, Czech Republic 

 Triangulation in E2 and E3 using CPU and GPU 

  



Project assignments, other activities 

 
  

89 

A.3 Teaching activities 

2015/2016 

 Fundamentals of Computer Graphics (KIV/ZPG) 

2014/2015 

 Fundamentals of Computer Graphics (KIV(ZPG) 

 Introduction to Computer Graphics (KIV/UPG) 

2013/2014 

 Fundamentals of Computer Graphics (KIV/ZPG) 
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